화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.56, 342-349, December, 2017
Effect of specific functional groups on oil adhesion from mica substrate: Implications for low salinity effect
E-mail:,
Low salinity effect has been in the center of attention as a cost-effective and environmentally friendly technique. Wettability alteration of the oil/brine/mica system appears to be the identified mechanism(s) to trigger the low salinity effect. While the effect of water chemistry and minerology on the wettability of the system has been extensively investigated, few studies have investigated the effect of specific function groups from crude oil on the system wettability, limiting the understanding of how specific functional group contributes to the wettability. We thus experimentally measured the adhesion forces between mica surfaces and functional groups (e.g., C6H5-, CH3-, COOH-, and NH2-) in the presence of different aqueous ionic solutions using chemical force microscopy (CFM). Moreover, to understand the contribution of the structural force, the traditional Derjaguin.Landau-Verwey-Overbeek (DLVO) theory was extended (denoted as EDLVO) to fit the force profiles using a Gauss model. Our results showed that the adhesion force between mica and functional groups in a decreasing order was -NH2> -COOH > -CH3> .C6H5. We also found that while DLVO forces strongly affected the tip-surface contact due to the interactions among oil/brine/mica interfaces, the structural forces also played an important role in a distance of 1-20 nm due to the presence of H-bonds between COOH-terminated or NH2-terminated tip and mica surface. We therefore conclude that the structural force largely contributes to the adhesion force due to the hydrophilicity or polarity of functional groups, and nucleophilic property (such as phenyl group). Our results suggest that the polarity of the crude oil needs to be considered to screen a candidate reservoir for low salinity water flooding projects.
  1. Xie Q, Saeedi A, Pooryousefy E, Liu Y, J. Mol. Liq., 221, 658 (2016)
  2. Underwood T, Erastova V, Cubillas P, Greenwell HC, J. Phys. Chem., 119, 7282 (2015)
  3. Al-Shalabi EW, Sepehrnoori K, J. Petrol. Sci. Eng., 139, 137 (2016)
  4. Myint PC, Firoozabadi A, Curr. Opin. Colloid Interface Sci., 20(2), 105 (2015)
  5. Tang GQ, Morrow NR, J. Petrol. Sci. Eng., 24(2-4), 99 (1999)
  6. Mcguire PL, Chatham JR, Paskvan FK, Sommer DM, Carini FH, Low Salinity Oil Recovery: An Exciting New EOR Opportunity for Alaska’s North Slope, (2005).
  7. Lager A, Webb KJ, Black CJJ, Singleton M, Sorbie KS, Petrophysics, 49(1), 28 (2008)
  8. Lee SY, Webb KJ, Collins I, Lager A, Clarke S, Osullivan M, Routh A, Wang X, Low Salinity Oil Recovery: Increasing Understanding of the Underlying Mechanisms, (2010).
  9. Seccombe J, Lager A, Webb K, Jerauld G, Fueg E, Improving wateflood recovery: LoSalTM EOR field evaluation, SPE Symposium on Improved Oil Recovery (2008).
  10. Ligthelm D, Gronsveld J, Hofman J, Brussee N, Marcelis F, Linde HVD, Novel waterflooding strategy by manipulation of injection brine composition, SPE (2009).
  11. Nasralla RA, Nasr-El-Din HA, SPE Reserv. Eval. Eng., 17, 49 (2014)
  12. Xie Q, Liu Y, Wu J, Liu Q, J. Petrol. Sci. Eng., 124, 350 (2014)
  13. RezaeiDoust A, Puntervold T, Strand S, Austad T, Energy Fuels, 23, 4479 (2009)
  14. Lashkarbolooki M, Riazi M, Hajibagheri F, Ayatollahi S, J. Mol. Liq., 216, 377 (2016)
  15. Sandengen K, Arntzen OJ, Osmosis During Low Salinity Water Flooding, (2013).
  16. Mahani H, Berg S, Ilic D, Bartels WB, Joekar-Niasar V, SPE J., 20(1), 8 (2015)
  17. Hassenkam T, Andersson MP, Hilner E, Matthiesen J, Dobberschutz S, Dalby KN, Bovet N, Stipp SLS, Salino P, Reddick C, SPE J., 11(2), f1 (2016)
  18. Jackson MD, Almahrouqi D, Vinogradov J, Sci. Rep., 6 (2016)
  19. Pouryousefy E, Xie Q, Saeedi A, Petroleum, 2(3), 215 (2016)
  20. Arnarson TS, Keil RG, Mar. Chem., 71, 309 (2000)
  21. Rashid MA, Buckley DE, Robertson KR, Geoderma, 8, 11 (1972)
  22. RezaeiDoust A, Puntervold T, Austad T, Energy Fuels, 25(5), 2151 (2011)
  23. Lorenz B, Ceccato M, Andersson MP, Dobberschutz S, Rodriguez-Blanco JD, Dalby KN, Hassenkam T, Stipp SLS, Energy Fuels, 31(5), 4670 (2017)
  24. Hassenkam T, Mitchell AC, Pedersen CS, Skovbjerg LL, Bovet N, Stipp SLS, Colloids Surf. A: Physicochem. Eng. Asp., 403, 79 (2012)
  25. Mugele F, Bera B, Cavalli A, Siretanu I, Maestro A, Duits M, Cohen-Stuart M, van den Ende D, Stocker I, Collins I, Sci. Rep., 5, 10519 (2015)
  26. Wu JZ, Liu FH, Chen G, Wu X, Ma DS, Liu QJ, Xu SJ, Huang SZ, Chen T, Zhang W, Yang H, Wang JB, Energy Fuels, 30(1), 273 (2016)
  27. Noy A, Vezenov DV, Lieber CM, Annu. Rev. Mater. Sci., 27, 381 (1997)
  28. Smith DA, Connell SD, Robinson C, Kirkham J, Anal. Chim. Acta, 479, 39 (2003)
  29. Lee J, Ju S, Kim IT, Jung SH, Sin SJ, Kim C, Sim SJ, Kim SK, Sensors, 15, 30683 (2015)
  30. Frisbie CD, Rozsnyai LF, Noy A, Wrighton MS, Lieber CM, Science, 265(5181), 2071 (1994)
  31. Buckley JS, Liu Y, Xie X, MorrowN R, SPE J., 2(2), 107 (1997)
  32. Tang GQ, Morrow NR, SPE Reserv. Eng., 12(4), 269 (1997)
  33. Bartels WB, Mahani H, Berg S, Menezes R, (2016). Low Salinity Flooding (LSF) in Sandstones at Pore Scale: Micro-Model Development and Investigation. SPE, 181386-MS.
  34. Bartels WB, Mahani H, Berg S, (2017). Oil Configuration under High Salinity and Low Salinity Conditions at Pore Scale: A Parametric Investigation Using a Single-Channel Micro-model. SPE, 181386-PA.
  35. Matthiesen J, Bovet N, Hilner E, Andersson MP, Schmidt DA, Webb KJ, Dalby KN, Hassenkam T, Crouch J, Collins IR, Stipp SLS, Energy Fuels, 28(8), 4849 (2014)
  36. Aslan S, Najafabadi NF, Firoozabadi A, Energy Fuels, 30(4), 2858 (2016)
  37. Alotaibi MB, Nasralla RA, Nasr-El-Din HA, SPE Reserv. Eval. Eng., 14(6), 713 (2011)
  38. Yoon RH, Flinn DH, Rabinovich YI, J. Colloid Interface Sci., 185(2), 363 (1997)
  39. Butt HJ, Biophys. J., 60, 1438 (1991)
  40. Ducker WA, Senden TJ, Pashley RM, Langmuir, 8(7), 1831 (1992)
  41. Hutter JL, Bechhoefer J, Rev. Sci. Instrum., 64, 1868 (1993)
  42. Kappl M, Butt HJ, Part. Part. Syst. Charact., 19(3), 129 (2002)
  43. McNamee CE, Higashitani K, Langmuir, 31(22), 6064 (2015)
  44. Herder PC, J. Colloid Interface Sci., 134, 346 (1990)
  45. Ferguson MA, Kozlowski JJ, J. Chem. Educ., 90, 364 (2013)
  46. Yang G, Chen T, Zhao J, Yu DF, Liu FH, Wang DX, Fan MH, Chen WJ, Zhang J, Yang H, Wang JB, Energy Fuels, 29(7), 4272 (2015)
  47. Israelachvili J, J. Vac. Sci. Technol. A, 10, 2961 (1992)
  48. Chandrasekhar B, Rao D, Symp. Improv. Oil Recovery, 21(4), 474 (2004)
  49. Gudarzi MM, Trefalt G, Szilagyi I, Maroni P, Borkovec M, J. Phys. Chem., 119, 15482 (2015)
  50. Buckley JS, Takamura K, Morrow NR, SPE Reserv. Eval. Eng., 3(3), 332 (1989)
  51. Pailthorpe BA, Russel WB, J. Colloid Interface Sci., 89, 563 (1982)
  52. Gregory J, J. Colloid Interface Sci., 83, 138 (1981)
  53. Dl F, Wr S, J. Fluid Mech., 133(133), 17 (1983)
  54. Israelachvili JN, Chapter 13 . Van Der Waals forces between particles and surfaces, Intermolecular & Surface Forces, Third Edition, pp. 253.289 (2011).
  55. Israelachvili JN, Chapter 14 . electrostatic forces between surfaces in liquids, Intermolecular and Surface Forces, Third Edition, pp. 291.340 (2011).
  56. Wiacek A, Chibowski E, Colloids Surf. B: Biointerfaces, 14, 19 (1999)
  57. Thio BJR, Lee JH, Meredith JC, Keller AA, Langmuir, 26(17), 13995 (2010)
  58. Hirasaki GJ, SPE Form. Eval., 6(2), 217 (1991)
  59. Heidug WK, J. Geophys. Res., 100(B4), 5931 (1995)
  60. Austad T, Strand S, Hgnesen EJ, Seawater as IOR fluid in fractured chalk, SPE International Symposium on Oilfield Chemistry (2005).
  61. Zhang P, Austad T, Colloids Surf. A: Physicochem. Eng. Asp., 279(1-3), 179 (2006)
  62. Strand S, Høgnesen EJ, Austad T, Colloids Surf. A: Physicochem. Eng. Asp., 275(1), 1 (2006)
  63. Fathi SJ, Austad T, Strand S, Water-based Enhanced Oil recovery (EOR) by smart water in carbonate reservoirs, SPE (2012).
  64. Mohanty KK, Chandrasekhar S, Wettability alteration with brine composition in high temperature carbonate reservoirs, Wettability Alteration in High Temperature Carbonate Reservoirs, (2013).
  65. Yousef A, Al-Saleh S, Al-Jawfi M, Improved/enhanced oil recovery from carbonate reservoirs by tuning injection water salinity and ionic content, SPE Improved Oil Recovery Symposium (2012).
  66. Valle-Delgado JJ, Molina-Bolivar JA, Galisteo-Gonza’lez F, Ga’lvez-Ruiz MJ, Feiler A, Rutland MW, J. Chem. Phys., 123(3), 034708 (2005)
  67. Romanuka J, Hofman J, Ligthelm DJ, Low salinity EOR in carbonates, Improved Oil Recovery Symposium (2012).
  68. Ferno MA, Gronsdal R, Asheim J, Nyheim A, Berge M, Graue A, Energy Fuels, 25(4), 1697 (2011)
  69. Alsteens D, Dague E, Rouxhet PG, Baulard AR, Dufrene YF, Langmuir, 23(24), 11977 (2007)
  70. Juhl KMS, Pedersen CS, Bovet N, Dalby KN, Hassenkam T, Andersson MP, Okhrimenko D, Stipp SLS, Langmuir, 30(48), 14476 (2014)