화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.6, 973-977, November, 2017
SLA 3-D 프린팅용 실록산 함유 아크릴레이트의 충격강도 향상 연구
Enhancement of Impact Strength in Acrylate with Siloxane for SLA 3-D Printing
E-mail:
초록
SLA(stereolithography) 3-D 프린팅 소재로 사용되는 아크릴레이트에 비닐기를 함유한 실록산을 첨가하여 이에 따른 충격강도 변화를 살펴보았다. 비닐 함유 실록산 함량 증가에 따라 아크릴레이트의 충격강도가 현저히 증가함을 보였다. FTIR 실험 결과, UV 조사에 의하여 실록산의 비닐기 C=C 이중결합이 사라짐과 photo DSC 결과, 비닐기 함유 실록산 첨가에 따라 광경화 엔탈피가 증가함을 확인하였다. 이러한 결과로부터 실록산 비닐기와 아크릴레이트 상호간 광경화가 일어나며 그 결과, 실록산의 고무적인 강인화에 의하여 아크릴레이트의 충격강도가 증가됨을 알 수 있었다. 이와 함께 비닐 함유 실록산을 상업용 SLA 3-D 프린팅 아크릴레이트 소재에 적용한 결과 또한 유사한 결과를 얻어 비닐 함유 실록산이 SLA 3-D 프린팅 소재의 충격강도 증가 첨가제로 사용될 수 있음을 확인 하였다.
The enhancement of impact strength of acrylate for SLA (stereolithography) 3-D printing was investigated using siloxane having vinyl group. It was found that impact strength of acrylate was increased by adding siloxane with vinyl group. This was understood that photo crosslinking took place between C=C in vinyl siloxane and acrylate. Our FTIR results show that C=C in vinyl siloxane vanished after exposure of UV. As a result, the intensity of photo crosslinking obtained from photo DSC was increased with increasing siloxane content. Photo crosslinking between siloxane and acrylate caused rubber toughened morphology and it resulted in the increase of impact strength in acrylate. Similar results have been obtained when we applied siloxane to commercially available acrylate for SLA 3-D printing as an additive.
  1. Park HW, JKSME, 10, 36 (2014)
  2. Jeong YS, Lee SH, Choi SM, Korean Soc. Precis. Eng., 5, 995 (2015)
  3. Kwang HJ, Jang HS, Ha YM, Lee SH, J. Korean Soc. Precis. Eng., 32, 10 (2015)
  4. Varadan VK, Jiang X, Varadan VV, Microstereolithography and other fabrication techniques for 3D MEMS, John Wiley and Sons, New York, 2001.
  5. Nason C, Roper T, Hoyle C, Pojman JA, Macromolecules, 38, 5506 (2006)
  6. Hutmacher DW, Sittinger M, Risbud MV, Trends Biotechnol., 22, 7 (2004)
  7. 3-D Printers - PICO 2 & PlasGray brochure, ASIGA (2016).
  8. Kim IB, Song BJ, Lee MC, J. Korean Ind. Eng. Chem., 17, 1 (2006)
  9. Roffey CG, Photogeneration of Reactive Species for UV curing, John Wiley and Sons, New York, 1997.
  10. Jacobine AF, Radiation curing in polymer science and technology, J. P. Fouassier and J. F. Rabek, Editors, Elsevier, New York, vol 3, pp. 219 (1993).
  11. Lee H, Chin IJ, Macromol. Res., 24(6), 515 (2016)
  12. Choochottiros C, Macromol. Res., 24(9), 838 (2016)
  13. Eskandari P, Mazidi MM, Aghjeh MKR, Macromol. Res., 24(1), 14 (2016)
  14. Yang B, Hu L, Xia R, Chen F, Zhao SC, Deng YL, Cao M, Qian JS, Chen P, Macromol. Res., 24(1), 74 (2016)
  15. Feldman D, Banu D, Blaga A, Polymer, 25, 1603 (1984)
  16. Santra RN, Sanjoy R, Bhowmick AK, Nando GB, Polym. Eng. Sci., 33, 1352 (1993)
  17. Park HS, Yang IM, Wu JP, Kim MS, Hahm HS, Kim SK, Rhee HW, J. Appl. Polym. Sci., 81(7), 1614 (2001)
  18. Kang DW, Lee BC, Polym. Korea, 28(2), 143 (2004)