화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.12, 3200-3207, December, 2017
Plasmon-enhanced ZnO nanorod/Au NPs/Cu2O structure solar cells: Effects and limitations
E-mail:,
Cu-based compounds can be a good candidate for a low cost solar cell material. In particular, CuxO (x : 1- 2) has a good visible light absorbing bandgap at 1-2 eV. As for using nanostructures in solar cell applications, metal nanoparticle-induced localized plasmon resonance is a promising way to increase light absorbance, which can help improve the efficiency of solar cells. We fabricated ZnO nanorod/Au nanoparticles/Cu2O nanostructures to study their solar cell performance. ZnO nanorods and Cu2O layer were synthesized by the electrodeposition method. Size-controlled Au nanoparticles were deposited using E-beam evaporator for localized surface plasmon resonance (LSPR) effect. By inserting Au plasmon nanoparticles and annealing Au NPs in solar cells, we could tune the maximum incident photon-to-current efficiency wavelength. However, the potential well formed by Au NP at the ZnO/Cu2O junction leads to charge-trapping, based on the constructed electronic band analysis. LSPR-induced hot carrier generation is proposed to promote carrier transport further in the presence of Au NPs.
  1. Kamat PV, J. Phys. Chem., 111, 2834 (2007)
  2. Loferski JJ, J. Appl. Phys., 27, 777 (1956)
  3. Wadia C, Alivisatos AP, Kammen DM, Environ. Sci. Technol., 43, 2072 (2009)
  4. Ergen O, Gibb A, Vazquez-Mena O, Regan WR, Zettl A, Appl. Phys. Lett., 106, 103904 (2015)
  5. Mittiga A, Salza E, Sarto F, Tucci M, Vasanthi R, Appl. Phys. Lett., 88, 163502 (2006)
  6. Chen X, Lin P, Yan X, Bai Z, Yuan H, Shen Y, Liu Y, Zhang G, Zhang Z, Zhang Y, ACS Appl. Mater. Interf, 7, 3216 (2015)
  7. Musselman KP, Wisnet A, Iza DC, Hesse HC, Scheu C, MacManus-Driscoll JL, Schmidt-Mende L, Adv. Mater., 22(35), E254 (2010)
  8. Tsin F, Venerosy A, Vidal J, Collin S, Clatot J, Lombez L, Paire M, Borensztajn S, Broussillou C, Grand PP, Scientific Reports, 5 (2015).
  9. Garine G, Fernando E, Carlos JP, Ricardo EM, Francisco M, Dietmar L, Jose RRB, Enrique AD, J. Phys. D-Appl. Phys., 45, 245301 (2012)
  10. Mirtchev P, Liao K, Jaluague E, Qiao Q, Tian Y, Varela M, Burch KS, Pennycook SJ, Perovic DD, Ozin G, J. Mater. Chem., 2, 8525 (2014)
  11. Yuhas BD, Yang PD, J. Am. Chem. Soc., 131(10), 3756 (2009)
  12. Luo J, Steier L, Son MK, Schreier M, Mayer MT, Gratzel M, Nano Lett., 16, 1848 (2016)
  13. Liu Q, Sandgren E, Barnhart M, Zhu R, Huang G, Photonics, 2, 893 (2015)
  14. Abd-Ellah M, Thomas JP, Zhang L, Leung KT, Sol. Energy Mater. Sol. Cells, 152, 87 (2016)
  15. Mattox TM, Ye XC, Manthiram K, Schuck PJ, Alivisatos AP, Urban JJ, Adv. Mater., 27(38), 5830 (2015)
  16. Ren S, Wang B, Zhang H, Ding P, Wang Q, ACS Appl. Mater. Interfaces, 7, 4066 (2015)
  17. Sriram M, Zong K, Vivekchand S, Gooding JJ, Sensors, 15, 25774 (2015)
  18. Gao Y, Jin F, Su Z, Zhao H, Luo Y, Chu B, Li W, Organic Electronics, 39, 71 (2016)
  19. Yen YC, Chen PH, Chen JZ, Chen JA. Lin KJ, ACS Appl. Mater. Interfaces, 7, 1892 (2015)
  20. Ahn S, Nardes AM, Rourke D, van de Lagemaat J, Kopidakis N, Park W, The effect of infrared sensitizer (presentation recording). In, 2015; 95620D-95620D-95621.
  21. Ievskaya Y, Hoye R, Sadhanala A, Musselman K, MacManus- Driscoll J, Sol. Energy Mater. Sol. Cells, 135, 43 (2015)
  22. Abdelfatah M, Ledig J, El-Shaer A, Wagner A, Marin-Borras V, Sharafeev A, Lemmens P, Mosaad MM, Waag A, Bakin A, Sol. Energy Mater. Sol. Cells, 145, 454 (2016)
  23. Shinagawa T, Chigane M, Tani J, Izaki M, In:Meeting Abstracts: The Electrochemical Society, 2016; 1636-1636.
  24. Jeong SS, Mittiga A, Salza E, Masci A, Passerini S, Electrochim. Acta, 53(5), 2226 (2008)
  25. Cui J, Gibson UJ, J. Phys. Chem., 114, 6408 (2010)
  26. Musselman KP, Marin A, Wisnet A, Scheu C, MacManus-Driscoll JL, Schmidt-Mende L, Adv. Funct. Mater., 21(3), 573 (2011)
  27. Perng DC, Hong MH, Chen KH, Chen KH, J. Alloy. Compd., 695, 549 (2017)
  28. Dong H, Wu Z, El-Shafei A, Xia B, Xi J, Ning S, Jiao B, Hou X, J. Mater. Chem., 3, 4659 (2015)
  29. Liu GQ, Liu ZQ, Chen YH, Huang K, Li L, Tang FL, Gong LX, Hu Y, Zhang XN, Optik - International Journal for Light and Electron Optics, 124, 5124 (2013).
  30. Lee YK, Jung CH, Park J, Seo H, Somorjai GA, Park JY, Nano Lett., 11, 4251 (2011)
  31. Jia K, Bijeon JL, Adam PM, Ionescu RE, Plasmonics, 8, 143 (2013)
  32. Nakano Y, Saeki S, Morikawa T, Appl. Phys. Lett., 94, 022111 (2009)
  33. Viezbicke BD, Patel S, Davis BE, Birnie DP, Physica Status Solidi (b), 252, 1700 (2015)
  34. Honsberg C, Bowden S, ORG. (access April-June 2013) http:// pveducation.org/pvcdrom/properties-of-sunlight/sun-position-calculator (2014).
  35. Kraut EA, Grant RW, Waldrop JR, Kowalczyk SP, Phys. Rev. B, 28, 1965 (1983)
  36. Eom K, Kim S, Lee D, Seo H, RSC Adv, 5, 103803 (2015)
  37. Santoni A, Biccari F, Malerba C, Valentini M, Chierchia R, Mittiga A, J. Phys. D-Appl. Phys., 46, 175101 (2013)
  38. Yoo IH, Kalanur SS, Lee SY, Eom K, Jeon H, Seo H, RSC Adv., 6, 82900 (2016)
  39. Platzer-Bjorkman C, Frisk C, Larsen JK, Ericson T, Li SY, Scragg JJS, Keller J, Larsson F, Torndahl T, Appl. Phys. Lett., 107, 243904 (2015)
  40. Hao X, Sun K, Yan C, Liu F, Huang J, Pu A, et al., In:Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd: IEEE, 2016; 2164-2168.
  41. Zheng X, Chen B, Yang M, Wu C, Orler B, Moore RB, et al., ACS Energy Lett., 1, 424 (2016)
  42. Yoon K, Hyun JK, Connell JG, Amit I, Rosenwaks Y, Lauhon LJ, Nano Lett., 13, 6183 (2013)