Korean Journal of Chemical Engineering, Vol.34, No.12, 3200-3207, December, 2017
Plasmon-enhanced ZnO nanorod/Au NPs/Cu2O structure solar cells: Effects and limitations
E-mail:,
Cu-based compounds can be a good candidate for a low cost solar cell material. In particular, CuxO (x : 1- 2) has a good visible light absorbing bandgap at 1-2 eV. As for using nanostructures in solar cell applications, metal nanoparticle-induced localized plasmon resonance is a promising way to increase light absorbance, which can help improve the efficiency of solar cells. We fabricated ZnO nanorod/Au nanoparticles/Cu2O nanostructures to study their solar cell performance. ZnO nanorods and Cu2O layer were synthesized by the electrodeposition method. Size-controlled Au nanoparticles were deposited using E-beam evaporator for localized surface plasmon resonance (LSPR) effect. By inserting Au plasmon nanoparticles and annealing Au NPs in solar cells, we could tune the maximum incident photon-to-current efficiency wavelength. However, the potential well formed by Au NP at the ZnO/Cu2O junction leads to charge-trapping, based on the constructed electronic band analysis. LSPR-induced hot carrier generation is proposed to promote carrier transport further in the presence of Au NPs.
Keywords:Au Plasmon Nanoparticle;LSPR;ZnO/Cu2O Solar Cells;Oxide Solar Cells;Electronic Band Analysis
- Kamat PV, J. Phys. Chem., 111, 2834 (2007)
- Loferski JJ, J. Appl. Phys., 27, 777 (1956)
- Wadia C, Alivisatos AP, Kammen DM, Environ. Sci. Technol., 43, 2072 (2009)
- Ergen O, Gibb A, Vazquez-Mena O, Regan WR, Zettl A, Appl. Phys. Lett., 106, 103904 (2015)
- Mittiga A, Salza E, Sarto F, Tucci M, Vasanthi R, Appl. Phys. Lett., 88, 163502 (2006)
- Chen X, Lin P, Yan X, Bai Z, Yuan H, Shen Y, Liu Y, Zhang G, Zhang Z, Zhang Y, ACS Appl. Mater. Interf, 7, 3216 (2015)
- Musselman KP, Wisnet A, Iza DC, Hesse HC, Scheu C, MacManus-Driscoll JL, Schmidt-Mende L, Adv. Mater., 22(35), E254 (2010)
- Tsin F, Venerosy A, Vidal J, Collin S, Clatot J, Lombez L, Paire M, Borensztajn S, Broussillou C, Grand PP, Scientific Reports, 5 (2015).
- Garine G, Fernando E, Carlos JP, Ricardo EM, Francisco M, Dietmar L, Jose RRB, Enrique AD, J. Phys. D-Appl. Phys., 45, 245301 (2012)
- Mirtchev P, Liao K, Jaluague E, Qiao Q, Tian Y, Varela M, Burch KS, Pennycook SJ, Perovic DD, Ozin G, J. Mater. Chem., 2, 8525 (2014)
- Yuhas BD, Yang PD, J. Am. Chem. Soc., 131(10), 3756 (2009)
- Luo J, Steier L, Son MK, Schreier M, Mayer MT, Gratzel M, Nano Lett., 16, 1848 (2016)
- Liu Q, Sandgren E, Barnhart M, Zhu R, Huang G, Photonics, 2, 893 (2015)
- Abd-Ellah M, Thomas JP, Zhang L, Leung KT, Sol. Energy Mater. Sol. Cells, 152, 87 (2016)
- Mattox TM, Ye XC, Manthiram K, Schuck PJ, Alivisatos AP, Urban JJ, Adv. Mater., 27(38), 5830 (2015)
- Ren S, Wang B, Zhang H, Ding P, Wang Q, ACS Appl. Mater. Interfaces, 7, 4066 (2015)
- Sriram M, Zong K, Vivekchand S, Gooding JJ, Sensors, 15, 25774 (2015)
- Gao Y, Jin F, Su Z, Zhao H, Luo Y, Chu B, Li W, Organic Electronics, 39, 71 (2016)
- Yen YC, Chen PH, Chen JZ, Chen JA. Lin KJ, ACS Appl. Mater. Interfaces, 7, 1892 (2015)
- Ahn S, Nardes AM, Rourke D, van de Lagemaat J, Kopidakis N, Park W, The effect of infrared sensitizer (presentation recording). In, 2015; 95620D-95620D-95621.
- Ievskaya Y, Hoye R, Sadhanala A, Musselman K, MacManus- Driscoll J, Sol. Energy Mater. Sol. Cells, 135, 43 (2015)
- Abdelfatah M, Ledig J, El-Shaer A, Wagner A, Marin-Borras V, Sharafeev A, Lemmens P, Mosaad MM, Waag A, Bakin A, Sol. Energy Mater. Sol. Cells, 145, 454 (2016)
- Shinagawa T, Chigane M, Tani J, Izaki M, In:Meeting Abstracts: The Electrochemical Society, 2016; 1636-1636.
- Jeong SS, Mittiga A, Salza E, Masci A, Passerini S, Electrochim. Acta, 53(5), 2226 (2008)
- Cui J, Gibson UJ, J. Phys. Chem., 114, 6408 (2010)
- Musselman KP, Marin A, Wisnet A, Scheu C, MacManus-Driscoll JL, Schmidt-Mende L, Adv. Funct. Mater., 21(3), 573 (2011)
- Perng DC, Hong MH, Chen KH, Chen KH, J. Alloy. Compd., 695, 549 (2017)
- Dong H, Wu Z, El-Shafei A, Xia B, Xi J, Ning S, Jiao B, Hou X, J. Mater. Chem., 3, 4659 (2015)
- Liu GQ, Liu ZQ, Chen YH, Huang K, Li L, Tang FL, Gong LX, Hu Y, Zhang XN, Optik - International Journal for Light and Electron Optics, 124, 5124 (2013).
- Lee YK, Jung CH, Park J, Seo H, Somorjai GA, Park JY, Nano Lett., 11, 4251 (2011)
- Jia K, Bijeon JL, Adam PM, Ionescu RE, Plasmonics, 8, 143 (2013)
- Nakano Y, Saeki S, Morikawa T, Appl. Phys. Lett., 94, 022111 (2009)
- Viezbicke BD, Patel S, Davis BE, Birnie DP, Physica Status Solidi (b), 252, 1700 (2015)
- Honsberg C, Bowden S, ORG. (access April-June 2013) http:// pveducation.org/pvcdrom/properties-of-sunlight/sun-position-calculator (2014).
- Kraut EA, Grant RW, Waldrop JR, Kowalczyk SP, Phys. Rev. B, 28, 1965 (1983)
- Eom K, Kim S, Lee D, Seo H, RSC Adv, 5, 103803 (2015)
- Santoni A, Biccari F, Malerba C, Valentini M, Chierchia R, Mittiga A, J. Phys. D-Appl. Phys., 46, 175101 (2013)
- Yoo IH, Kalanur SS, Lee SY, Eom K, Jeon H, Seo H, RSC Adv., 6, 82900 (2016)
- Platzer-Bjorkman C, Frisk C, Larsen JK, Ericson T, Li SY, Scragg JJS, Keller J, Larsson F, Torndahl T, Appl. Phys. Lett., 107, 243904 (2015)
- Hao X, Sun K, Yan C, Liu F, Huang J, Pu A, et al., In:Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd: IEEE, 2016; 2164-2168.
- Zheng X, Chen B, Yang M, Wu C, Orler B, Moore RB, et al., ACS Energy Lett., 1, 424 (2016)
- Yoon K, Hyun JK, Connell JG, Amit I, Rosenwaks Y, Lauhon LJ, Nano Lett., 13, 6183 (2013)