Macromolecular Research, Vol.25, No.11, 1070-1075, November, 2017
Kinetics of Sn(Oct)2-catalyzed ring opening polymerization of ε-caprolactone
E-mail:
To evaluate the effects of different alcohols (primary, secondary, and two different tertiary alcohols) as initiators on the structure of polycaprolactone (PCL) in ring-opening polymerization (ROP), four experiments were conducted in toluene with tin(II) 2-ethylhexanoate (Sn(Oct)2) as the catalyst. The kinetics of ε-caprolactone (ε-CL) ROP at different temperatures and monomer concentrations were studied with n-butanol as the initiator and Sn(Oct)2 as the catalyst. The kinetic plot of ln(M0/Mt) vs. time (t) seems a linear, which indicates that the propagation rate is in the first order with respect to monomer concentration. When the reaction temperature increased, the reaction rate and the final relative maximum monomer conversions also increased. The molecular weight of PCL initially increased and then decreased as monomer conversion increased. This behavior can be attributed to the high viscosity of the system, which affected monomer diffusion and polymer chain propagation. In addition, prolonging reaction time caused inter-/intramolecular transesterification. However, when monomer concentration decreased, the reaction rate decreased. The actual activation energy of Sn(Oct)2-catalyzed ROP of ε-CL in toluene was -75 kJ/mol.
- Albertsson AC, Varma IK, Biomacromolecules, 4(6), 1466 (2003)
- Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE, J. Control. Release, 152, 168 (2011)
- Khan JH, Schue F, George GA, Polym. Int., 58, 296 (2009)
- Oshimura M, Takasu A, Nagata K, Macromolecules, 42(8), 3086 (2009)
- Barbier-Baudry D, Brachais L, Cretu A, Gattin R, Loupy A, Stuerga D, Environ. Chem. Lett., 1, 19 (2003)
- Sutar AK, Maharana T, Dutta S, Chena CT, LinSutar CC, Chem. Soc. Rev., 39, 1724 (2010)
- Susperregui N, Delcroix D, Martin-Vaca B, Bourissou D, Maron L, J. Org. Chem., 75, 6581 (2010)
- Thurecht KJ, Heise A, deGeus M, Villarroya S, Zhou JX, Wyatt MF, Howdle SM, Macromolecules, 39(23), 7967 (2006)
- Loeker FC, Duxbury CJ, Kumar R, Gao W, Gross RA, Howdle SM, Macromolecules, 37(7), 2450 (2004)
- Arbaoui A, Redshaw C, Polym. Chem., 1, 801 (2010)
- Perez Y, del Hierro I, Zazo L, Fernandez-Galanb R, Fajardoa M, Dalton Trans, 44, 4088 (2015)
- Stassin F, Jerome R, Chem. Commun., 1, 232 (2003)
- Ryner M, Finne A, Albertsson AC, Kricheldorf HR, Macromolecules, 34(21), 7281 (2001)
- Moller M, Kange R, Hedrick JL, J. Polym. Sci. A: Polym. Chem., 38(11), 2067 (2000)
- Sattayanon C, Sontising W, Jitonnom J, Meepowpan P, Punyodom W, Kungwan N, Comput. Theor. Chem., 1044, 29 (2014)
- Hong JT, Cho NS, Yoon HS, Kim TH, Lee DH, Kim WG, J. Polym. Sci. A: Polym. Chem., 43(13), 2790 (2005)
- Chen YJ, Fang HJ, Hsu SCN, Jheng NY, Chang HC, Ou SW, Peng WT, Lai YC, Chen JY, Chen PL, Kao CH, Zeng ZX, Chen JL, Chen HY, Polym. Bull., 70(3), 993 (2013)
- Xiao CS, Wang YC, Du JZ, Chen XS, Wang J, Macromolecules, 39(20), 6825 (2006)
- Leenslag JW, Pennings AJ, Makromol. Chem., 188, 1809 (1987)
- Bratton D, Brown M, Howdle SM, Macromolecules, 38(4), 1190 (2005)
- Nijenhuis AJ, Grijpma DW, Pennings AJ, Macromolecules, 25, 6419 (1992)
- Albertsson AC, Lofgren A, J. Macromol. Sci. A, 32, 41 (1995)
- Rafler G, Dahlmann J, Acta Polym., 43, 91 (1992)
- Kowalski A, Duda A, Penczek S, Macromolecules, 33(3), 689 (2000)
- Storey RF, Sherman JW, Macromolecules, 35(5), 1504 (2002)
- Kowalski A, Duda A, Penczek S, Macromol. Rapid Commun., 19(11), 567 (1998)
- Meelua W, Molloy R, Meepowpan P, PunyodomMeelua W, J. Polym. Res., 19, 9799 (2012)
- Yu C, Zhang L, Shen Z, Eur. Polym. J., 39, 1021 (2003)