화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.6, 679-684, December, 2017
Edge Activator가 수화 액정형 베시클의 입자크기와 피부 침투에 미치는 영향
Effects of Edge Activator on the Droplet Size and Skin Permeation of Hydrated Liquid Crystalline Vesicles
E-mail:
초록
베시클 막을 유연하게 만드는 edge activator를 혼합하여 수화 액정형 베시클을 제조하고 niacinamide를 베시클 안에 포집시켰다. 제조 과정 중 액정 상 형성 및 액정의 열적 상전이 현상을 편광현미경과 시차주사 열량계(DSC)를 통해 살펴보았다. Sodium deoxycholate, lysolecithin, polysorbate 80 등의 edge activator를 첨가하면 수화 액정형 베시클 입자가 수십 나노 사이즈로 줄어들었다. 수화 액정형 베시클을 활용하여 niacinamide를 피부 침투시키면 수용액 상태로 도포 했을 때보다 피부 침투된 niacinamide의 양이 크게 증가하는데, 10% sodium deoxycholate를 혼합한 베시클에서는 niacinamide 침투량이 4배 가까이 증가하였다. 이러한 결과로부터 edge activator를 베시클에 혼합하면 베시클의 피부 침투력이 향상됨을 알 수 있었다.
Hydrated liquid crystalline vesicles incorporating a edge activator, which confers flexibility to the vesicle membranes, were prepared and niacinamide was encapsulated in them. The formation of liquid crystalline phases and their thermal phase transitions were investigated by polarized optical microscopy and differential scanning calorimetry (DSC), respectively. Droplet sizes of the vesicles were reduced to several tens of nanometers by incorporating edge activators, such as sodium deoxycholate, lysolecithin, or polysorbate 80. The amount of niacinamide permeated into a pig skin increased greatly using the hydrated liquid crystalline vesicles compared to the case where niacinamide was applied in an aqueous solution state. The vesicles incorporating 10% sodium deoxycholate increased the amount of niacinamide permeated nearly four times. These results suggest that edge activators are effective in improving the skin permeability of vesicles.
  1. Verma D, Verma S, Blume G, Fahr A, Int. J. Pharm., 258, 141 (2003)
  2. Kirjavainen M, Urtti A, Jaaskelainen I, Suhonen T, Paronen P, Valjakka-Koskela R, Kiesvaara J, Monkkonen J, Biochim. Biophys. Acta, 1304, 179 (1996)
  3. Trotta M, Peira E, Debernardi F, Gallarate M, Int. J. Pharm., 241, 319 (2002)
  4. Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM, Int. J. Pharm., 332, 1 (2007)
  5. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M, J. Control. Release, 65, 403 (2000)
  6. Aldulbaqi IM, Darwis Y, Khan NAK, Assi RA, Khan AA, Int. J. Nanomed., 11, 2279 (2016)
  7. Touitou E, Godin B, Weiss C, Drug Dev. Res., 50, 406 (2000)
  8. Bragagni M, Mennini N, Maestrelli F, Cirri M, Mura P, Drug Deliv., 19, 354 (2012)
  9. Yeh MI, Huang HC, Liaw JH, Huang MC, Wu TH, Huang KF, Hsu FL, Int. J. Dermatol., 52, 868 (2013)
  10. Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD, Colloids Surf. B: Biointerfaces, 92, 299 (2012)
  11. Lee SM, Choi MJ, Lee YM, Jin BS, Appl. Chem. Eng., 21(1), 40 (2010)
  12. Lim YM, Jun YK, Park S, Jin BS, Appl. Chem. Eng., 25(4), 368 (2014)
  13. Jin BS, Lee SM, Lee KH, Appl. Chem. Eng., 17, 138 (2006)
  14. Heldt N, Zhao J, Friberg S, Zhang Z, Slack G, Li Y, Tetrahedron, 56, 6985 (2000)
  15. El Maghraby G, Willams A, Barry B, Int. J. Pharm., 276, 143 (2004)
  16. Tung SH, Huang YE, Raghavan SR, J. Am. Chem. Soc., 128(17), 5751 (2006)
  17. Bae DH, Shin JS, Appl. Chem. Eng., 11, 522 (2000)
  18. Bhattacharjee J, Verma G, Aswal VK, Date AA, Nagarsenker MS, Hassan PA, J. Phys. Chem. B, 114(49), 16414 (2010)
  19. Jones MN, Adv. Colloid Interface Sci., 54, 93 (1995)
  20. Jadupati M, Amites G, Kumar NA, Int. Res. J. Pharm., 3, 35 (2012)
  21. El Macghraby GMM, Williams AC, Barry BW, J. Pharm. Pharmacol., 53, 1311 (2001)