Applied Chemistry for Engineering, Vol.28, No.6, 685-690, December, 2017
제올라이트와 Klebsiella pneumonia sp.을 이용한 화학-생물학적 액상 암모니아의 제거 효율 연구
Investigation of Liquid Phase Ammonia Removal Efficiency by Chemo-biological Process of Zeolites and Klebsiella pneumonia sp.
E-mail:
초록
암모니아는 현대 산업에서 빠질 수 없는 유용한 물질이다. 일반적으로 농업용 폐기물의 분해과정을 통해 배출되며 인체에 매우 해로운 독극물로 알려져 있다. 산업에서 흔하게 쓰이는 물질이기에 직접 누출이나 간접 누출로 인한 수질오염의 가능성이 있다. 이 경우 암모늄이온을 빠르게 제거하는 데는 제올라이트의 흡착능을 이용하는 것이 좋지만 흡착만으로는 충분히 제거할 수 없다. 본 논문에서는 상용 제올라이트의 흡착능을 통한 암모늄이온의 제거 효율과 미생물의 생물학적 메커니즘을 통한 제거효율을 비교하였다. 추가적으로 제올라이트에 미생물을 고정하여 화학적 흡착 및 생물학적 전환 기술을 병합하여 그 효율을 비교하였다. 그 결과 100 ppm 기준 상용 제올라이트의 경우 2-4 h 사이에 67-81%의 제거효율을 보이는데 반해 선정 미생물인 Klebsiella pneumoniae subsp. Pneumoniae를 이용한 경우 8 h 내에 최대 97%의 제거 효율을 나타냈었다. 그리고 미생물을 제올라이트에 고정시켰을 때 8 h 이내에 98.5%로 제거 효율 및 속도가 증가하는 것을 확인할 수 있었다.
Ammonia is a useful substance which is widely used in various industries. It is generally released by the decomposition of agricultural wastes and known to have toxic effects on human beings. Due to the common usage, it is possible to cause water pollution through either direct or indirect leakage. Such cases, it is preferable to use the adsorption capacity of zeolite to rapidly remove ammonium ions, but it is not sufficiently removed by the adsorption only. In this paper, the removal efficiency of ammonium ion through both the adsorption capacities of commercial synthetic zeolites and the biological mechanism of microorganisms were compared. In addition, microorganisms were immobilized on the zeolite in order to enhance the removal efficiency by applying a chemo-biological process. As a result, the standard commercial zeolite showed 67~81% of the removal efficiency in 2~4 hours at a 100 ppm concentration of ammonium, whereas the selected microorganism Klebsiella pneumoniae subsp. Pneumoniae showed up to 97% within 8 hours. When the microorganism was immobilized on the zeolite, the highest removal efficiency of approximately 98.5% were observed within 8 hours.
- Hu WF, Lo W, Chua H, Sin SN, Yu PHF, Environ. Int., 26, 369 (2001)
- Randall DJ, Tsui TKN, Mar. Pollut. Bull., 45, 17 (2002)
- Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P, Hepatology, 29, 648 (1999)
- Mook WT, Chakrabarti MH, Aroua MK, Khan GMA, Ali BS, Islam MS, Abu Hassan MA, Desalination, 285, 1 (2012)
- Marttinen SK, Kettunen RH, Sormunen KM, Soimasuo RM, Rintala JA, Chemosphere, 46, 851 (2002)
- Jorgensen TC, Weatherley LR, Water Res., 37, 1723 (2003)
- Nuernberg GB, Moreira MA, Ernani PR, Almeida JA, Maciel TM, J. Environ. Manage., 183, 667 (2016)
- Ding Y, Sartaj M, J. Environ. Chem. Eng., 3, 807 (2015)
- Wang S, Peng Y, Ma B, Wang S, Zhu G, Water Res., 84, 66 (2015)
- Ma YG, Hira D, Li ZG, Chen C, Furukawa K, Bioresour. Technol., 102(12), 6650 (2011)
- Zhang L, Wu W, Wang J, J. Environ. Sci., 19, 1293 (2007)
- Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA, Nature, 461, 976 (2009)
- Hatzenpichler R, Appl. Environ. Microbiol., 78, 7501 (2012)
- Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damste JSS, Proc. Natl. Acad. Sci. U.S.A., 103, 12317 (2006)
- Leininger S, Urich T, Schloter M, Schwar L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C, Nature, 442, 806 (2006)
- Ollivier J, Wanat N, Austruy A, Hitmi A, Joussein E, Welzi G, Munch JC, Schloter M, Microb. Ecol., 64, 1038 (2012)
- Murthy CR, Hertz L, J. Neurochem., 49, 735 (1987)
- Bak LK, Schousboe A, Waagepetersen HS, J. Neurochem., 98, 641 (2006)
- Preuss HG, Am. J. Physiol., 220, 54 (1971)
- Kim YJ, Yoshizawa M, Takenaka S, Murakami S, Aoki K, J. Biosci. Bioeng., 93(6), 584 (2002)
- Zhao B, He YL, Hughes J, Zhang XF, Bioresour. Technol., 101(14), 5194 (2010)
- Fernandez-Lopez MG, Popoca-Ursino C, Sanchez-Salinas E, Tinoco-Valencia R, Folch-Mallol JL, Dantan-Gonzalez E, Ortiz-Hemandez ML, Microbiologyopen, 6, 1 (2017)
- Ding Y, Sartaj M, J. Environ. Chem. Eng., 3, 807 (2015)
- van Heeswijk WC, Westerhoff HV, Boogerd FC, Microbiol. Mol. Biol. Rev., 77, 628 (2013)
- Reitzer L, Annu. Rev. Microbiol., 57, 155 (2003)
- Shehata TE, Marr AG, J. Bacteriol., 107, 210 (1971)
- Lendenmann U, Snozzi M, Egli T, Can. J. Microbiol., 46, 72 (2000)
- Becker M, De Cola L, Studer A, Chem. Commun., 47, 3392 (2011)
- Watanabe Y, Ikoma T, Yamada H, Suetsugu Y, Komatsu Y, Stevens GW, Moriyoshi Y, Tanaka J, ACS Appl. Mater. Interfaces, 1, 1579 (2009)