Korean Journal of Materials Research, Vol.27, No.11, 609-616, November, 2017
초음파 분무 열분해법에 의한 ZnO 나노구조 성장시 Leidenfrost 효과에 의한 성장 거동 변화
Growth Mechanism Evolution of ZnO Nanostructures by Leidenfrost Effect in Ultrasonic Spray Pyrolysis Deposition
E-mail:
We investigated a Leidenfrost effect in the growth of ZnO nanostructures on silicon substrates by ultrasonic-assisted spray pyrolysis deposition(SPD). Structural and optical properties of the ZnO nanostructures grown by varying the growth parameters, such as substrate temperature, source concentration, and suction rate of the mist in the chambers, were investigated using field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence spectrum analysis. Structural investigations of the ZnO nanostructures showed abnormal evolution of the morphologies with variation of the substrate temperatures. The shape of the ZnO nanostructures transformed from nanoplate, nanorod, nanopencil, and nanoprism shapes with increasing of the substrate temperature from 250 to 450 °C; these shapes were significantly different from those seen for the conventional growth mechanisms in SPD. The observed growth behavior showed that a Leidenfrost effect dominantly affected the growth mechanism of the ZnO nanostructures.
- Ahn CH, Kim YY, Kim DC, Mohanta SK, Cho HK, J. Appl. Phys., 105, 013502 (2012)
- Ardyanian M, Sedigh N, Bull. Mater. Sci., 37, 1309 (2014)
- Rahman MB, Keshmirl SH, Sens. Lett., 7, 1 (2009)
- Yun S, Lee J, Yang J, Lim S, Physica B, 405(2), 413 (2010)
- Jaramillo R, Ramanathan S, Sol. Energy Mater. Sol. Cells, 95(2), 602 (2011)
- Agura H, Suzuki A, Matsushita T, Aoki T, Okuda M, Thin Solid Films, 445(2), 263 (2003)
- Kuo SY, Chen WC, Lai FI, Cheng CP, Kuo HC, Wang SC, Hsieh WF, J. Cryst. Growth, 287(1), 78 (2006)
- Lee DY, Lee JW, An GH, Riu DH, Ahn HJ, Korean J. Mater. Res., 26(5), 258 (2016)
- Shin DY, Bae JW, Koo BR, Ahn HJ, Korean J. Mater. Res., 27(7), 390 (2017)
- Han IS, Park IK, Korean J. Mater. Res., 27(8), 403 (2017)
- Isakov I, Faber H, Grell M, Moon GW, Pliatsikas N, Kehagias T, Dimitrakopulos GP, Patsalas PP, Li R, Anthopoulos TD, Adv. Funct. Mater., 1606407 (2017).
- Ortel M, Wagner V, J. Cryst. Growth, 363, 185 (2013)
- Ahsanulhaq Q, Umar A, Hahn YB, Nanotechnology, 18, 115603 (2007)
- Xu CX, Sun XW, Jpn. J. Appl. Phys., 42, 4949 (2003)
- Chen S, Wilson RM, Binions R, J. Mater. Chem., 3, 5794 (2015)
- Qin N, Xiang Q, Zhao HB, Zhang JC, Xu JQ, Cryst. Eng. Comm., 16, 7062 (2014)
- Chen XL, Geng XH, Xue JM, Zhang DK, Hou GF, Zhao Y, J. Cryst. Growth, 296(1), 43 (2006)
- Dedova T, Volobujeva O, Klauson J, Nanoscale. Res. Lett., 2, 391 (2007)
- Terasako T, Shirakata S, Kariya T, Thin Solid Films, 420, 13 (2002)
- Laudise RA, Ballman AA, J. Phys. Chem., 64, 688 (1960)
- Cai X, Han B, Deng S, Wang Y, Dong C, Wang Y, Djerdj I, Cryst. Eng. Comm., 16, 7761 (2014)
- Harvie DJE, Fletcher DF, Int. J. Heat Mass Transf., 44(14), 2643 (2001)
- Vioguie JC, Spitz J, J. Electrochem. Soc., 122, 585 (1975)
- Polsongkram D, Chamninok P, Pukird S, Chow L, Lupan O, Chai G, Khallaf H, Park S, Schulte A, Physica B, 403, 3713 (2008)
- Ortel M, Wagner V, J. Cryst. Growth, 363, 185 (2013)
- Muecke UP, Messing GL, Gauckler LJ, Thin Solid Films, 517(5), 1515 (2009)
- Shah SK, Chatterjee SK, Bhattarai A, J. Chem., 2016, 2016 (2176)
- Zhu X, Kawaharamura T, Stieg AZ, Biswas C, Li L, Ma Z, Zurbuchen MA, Pei Q, Wang KL, Nano Lett., 15, 4948 (2015)
- Qiao YM, Chandra S, Int. J. Heat Mass Transf., 39(7), 1379 (1996)
- Shirota M, Van Limbeek MAJ, Sun C, Prosperetti A, Lohse D, Phys. Rev. Lett., 116, 064501 (2016)
- Li WJ, Sji EW, Zhong WZ, Yin ZW, J. Cryst. Growth, 203, 186 (1999)
- Zhang H, Yang D, Ji Y, Ma X, Xu J, Que D, J. Phys. Chem. B, 10, 3955 (2004)