화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.1, 129-136, January, 2018
Effect of CO2 addition on lignite gasification in a CFB reactor: A pilot-scale study
E-mail:
The addition of carbon dioxide to the gasification media during lignite gasification is introduced. The paper presents thermodynamic grounds of CO2 enhanced gasification using a simplified equilibrium model. Experimental tests conducted using a pilot-scale circulating fluidized bed gasifier are discussed. Detailed analysis of the CO2/ C ratio on process conditions, namely on the process gas composition, lower heating value and H2/CO ratio, is provided. Process gas composition implies that the gas is suitable for heat and power generation. Alternatively, CO2 enhanced gasification could be considered as a carbon capture and utilization technology when external, renewable heat supply to the process is used. The results thus obtained are the initial step toward development of the CO2 enhanced gasification process.
  1. Minchener AJ, Fuel, 84, 17 (2005)
  2. Smoot LD, Smith PJ, Coal Combustion and Gasification, Springer US, Boston, MA (1985).
  3. Higman C, State of the gasification industry-the updated worldworldwide gasification database, in: Colorado Springs (2013).
  4. The Gasification and Syngas Technologies Council, http://www.gasification-syngas.org.
  5. Prabowo B, Susanto H, Umeki K, Yan M, Yoshikawa K, Front. Energy, 9, 3 (2015)
  6. Cormos CC, Starr F, Tzimas E, Peteves S, Int. J. Hydrog. Energy, 33, 4 (2008)
  7. Irfan MF, Usman MR, Kusakabe K, Energy, 36, 1 (2011)
  8. Chmielniak T, Sciazko M, Tomaszewicz G, Tomaszewicz M, J. Therm. Anal. Calorim., 117, 3 (2014)
  9. Renganathan T, Yadav MV, Pushpavanam S, Voolapalli RK, Cho YS, Chem. Eng. Sci., 83, 159 (2012)
  10. Yoshida S, Matsunami J, Hosokawa Y, Yokota O, Tamaura Y, Kitamura M, Energy Fuels, 13, 5 (1999)
  11. Chmielniak T, Sobolewski A, Tomaszewicz G, Przem. Chem., 94(4), 442 (2015)
  12. Kook JW, Gwak IS, Gwak YR, Seo MW, Lee SH, Korean J. Chem. Eng., (2017).
  13. Ahmed II, Gupta AK, Appl. Energy, 88, 5 (2011)
  14. Kim JH, Kim GM, Lisandy KY, Jeon CH, Korean J. Chem. Eng., (2017).
  15. Marcourt M, Paquay V, Piel A, Pirard JP, Fuel, 62, 7 (1983)
  16. Kale GR, Dry autothermal reforming of fuels, CSIR-National Chemical Laboratory (2014).
  17. Fung DPC, Kim SD, Korean J. Chem. Eng., 7, 2 (1990)
  18. Benedikt F, Fuchs J, Schmid JC, Muller S, Hofbauer H, Korean J. Chem. Eng., 34, 9 (2017)
  19. Sawettaporn S, Bunyakiat K, Kitiyanan B, Korean J. Chem. Eng., 26, 4 (2009)
  20. Puig-Arnavat M, Bruno JC, Coronas A, Renew. Sust. Energ. Rev., 14, 9 (2010)
  21. Xu J, Froment GF, AIChE J., 35, 1 (1989)
  22. Hou K, Hughes R, Chem. Eng. J., 82, 1 (2001)
  23. Zainal ZA, Ali R, Lean CH, Seetharamu KN, Energy Conv. Manag., 42, 12 (2001)
  24. Jarungthammachote S, Dutta A, Energy, 32, 9 (2007)
  25. Chen L, Yong SZ, Ghoniem AF, Prog. Energy Combust. Sci., 38, 2 (2012)
  26. Guo J, Lou H, Zhao H, Chai D, Zheng X, Appl. Catal. A: Gen., 273, 1 (2004)
  27. Mentser M, Ergun S, Energy Research Center (1973).
  28. Kajitani S, Hara S, Matsuda H, Fuel, 81, 5 (2002)
  29. Karim GA, J. KONES Powertrain Transp., 14, 4 (2007)
  30. Szwaja S, J. KONES, 16 (2009)
  31. Akansu A, Int. J. Hydrog. Energy, 29, 14 (2004)
  32. Kent JA, Handbook of Industrial Chemistry and Biotechnology, Springer Science & Business Media (2013).