화학공학소재연구정보센터
Clean Technology, Vol.23, No.4, 413-420, December, 2017
석탄비산재로 합성한 제올라이트 X에 의한 수중의 Cs 이온 흡착에 반응표면분석법 적용
Application of Response Surface Methodology (RSM) on Adsorption of Cs Ion in Aqueous Solution with Zeolite X Synthesized from Coal Fly Ash
E-mail:
초록
화력발전소에서 발생되는 석탄비산재로부터 합성한 제올라이트 X를 이용한 Cs 흡착의 회분식 실험 및 반응표면분석법 (Response Surface Methodology, RSM)을 적용하여 결과를 분석하였다. Cs 흡착 실험에 적용된 회귀 방정식은 반응변수의 함수로 나타낼 수 있었다. 결정계수(r2)가 0.9630으로서 이 모델은 높은 상관성을 가졌다. pH > Cs 농도 > 온도와 같은 실험적 요인의 순서로 Cs의 제거효율에 영향을 준다는 것을 통계적인 결과로부터 확인하였다. 흡착속도는 유사 2차 모델에 의해 보다 정확하게 표현되었다. Langmuir 등온선 모델로부터 계산된 최대 흡착용량은 293 K에서 151.52 mg g-1이었다. 또한, Vant Hoff 식에 의해 계산된 열역학 파라미터에 의거하여 흡착반응이 흡열반응이며, 자발적인 과정임을 확인할 수 있었다.
The batch experiments and response surface methodology (RSM) have been applied to the investigation of the Cs adsorption with zeolite X synthesized using coal fly ash generated from the thermal power plant. Regression equation formulated for Cs adsorption was represented as a function of response variables. The model was highly relevant because the decision coefficient (r2) was 0.9630. It was confirmed from the statistical results that the removal efficiency of Cs was affected by the order of experimental factors as pH > Cs concentration > temperature. The adsorption kinetics were more accurately represented by a pseudo second-order model. The maximum adsorption capacity calculated from the Langmuir isotherm model was 151.52 mg g-1 at 293 K. Also, according to the thermodynamic parameters calculated from Vant Hoff equation, it could be confirmed that the adsorption reaction was an endothermic reaction and a spontaneous process.
  1. Yu W, He J, Lin W, Li Y, Men W, Wang F, Huang J, J. Environ. Radio., 142, 54 (2015)
  2. Ha JC, Song YJ, J. Rad. Prot. Res., 41(1), 7 (2015)
  3. Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM, Muta. Res., 636, 178 (2007)
  4. Lee CH, Park JM, Lee MG, J. Environ. Sci. Int., 24(2), 151 (2015)
  5. Smiciklas I, Dimovic S, Plecas I, Appl. Clay Sci., 35, 139 (2007)
  6. Lee KY, Park MS, Kim JM, Oh MK, Lee EH, Kim KW, Chung DY, Moon JK, Chemosphere, 150, 765 (2016)
  7. Ma B, Oh S, Shin WS, Choi SJ, Desalination, 276(1-3), 336 (2011)
  8. Cheon KH, Choi JH, Shin WS, Choi SJ, J. Environ. Sci. Int., 23(9), 1609 (2014)
  9. Sinha PK, Panicker PK, Amalraj RV, Krishnasamy V, Waste Manage., 15(2), 149 (1995)
  10. Mimura H, Akiba K, J. Nucl. Sci. Technol., 30(5), 436 (1993)
  11. Remenarova L, Pipiska M, Florkova E, Augustin J, Rozloznik M, Hostin S, Hornik M, Nova Biotechnologica et Chimica, 13, 57 (2014)
  12. El-Dessouky MI, El-Naggar MR, El-Rahman KMA, El-Kamash AM, Interna. J. Environ. Eng. Sci., 2(1), 117 (2011)
  13. Lee CH, Park JM, Lee MG, J. Environ. Sci. Int., 23(12), 1987 (2014)
  14. Lee CH, Kam SK, Lee MG, J. Environ. Sci. Int., 26(3), 363 (2017)
  15. Lee CH, Kam SK, Lee MG, J. Environ. Sci. Int., 26(6), 719 (2017)
  16. Abd El-Rahman KM, El-Sourougy MR, Abdel-Monem NM, Ismail IM, J. Nucl. Radiochem. Sci., 7(2), 21 (2006)
  17. Lagergren S, Kunglia Svenska Vetenskapsa-kademiens Handlingar., 24, 1-39 (1898).
  18. Ho YS, McKay G, J. Chem. Eng., 76, 822 (1998)
  19. Lee MG, Kam SK, Suh KH, J. Environ. Sci. Int., 21(5), 623 (2012)
  20. El-Kamash AM, J. Hazard. Mater., 151(2-3), 432 (2008)
  21. Torad NL, Naito M, Tatami J, Endo A, Leo SY, Ishihara S, Wu KC, Wakihara T, Yamauchi Y, Chem. Asian J., 9(3), 759 (2014)
  22. Weber WJ, Morris JC, J. Sanit. Eng. Div. ASCE., 89, 31 (1962)
  23. Abd El-Latif MM, Elkady MF, Desalination, 217, 41 (2011)
  24. Na CK, Han MY, Park HJ, J. Korean Soc. Environ. Eng., 33(8), 606 (2011)
  25. Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
  26. Freundlich HMF, J. Phys. Chem., 57, 385 (1906)
  27. Redlich O, Peterson DL, J. Phys. Chem., 63, 1024 (1959)
  28. Dubinin MM, Chem. Rev., 60, 235 (1960)