화학공학소재연구정보센터
Clean Technology, Vol.23, No.4, 421-428, December, 2017
이성분 휘발성유기화합물(Toluene-MEK)의 활성탄 흡착 및 탈착 특성
Adsorption and Desorption Characteristics of Binary-component Volatile Organic compounds (Toluene-MEK) on Activated Carbon
E-mail:
초록
본 연구는 상용활성탄을 사용하여 산업공정에서 많이 사용되는 휘발성 유기화합물 중 톨루엔, 메틸에틸케톤(MEK), 이성분계(톨루엔-MEK)를 대상으로 흡착 및 탈착특성을 고찰하였다. 최적탈착온도를 설정하기 위해 온도별 탈착특성을 고찰하였고, 활성탄의 특성을 파악하기 위해 BET분석을 하였다. 상온에서 흡착실험을 진행하였고, 120 ℃까지 승온하여 탈착실험을 진행하였다. 이 실험을 10회 반복해서 진행하였다. 이를 통해 단일성분에서는 반복횟수가 많아질수록 흡착 및 탈착능이 줄어들며 활성탄과 상대적으로 친화력이 적은 MEK의 경우 톨루엔보다 낮은 흡착 및 탈착능을 보였다. 이성분계의 흡착 및 탈착 반복시험에서 친화력이 낮은 MEK가 먼저 파과되고 결과적으로 주입 농도보다 높은 농도로 탈착되었다.
In this study, we have investigated the characteristics of adsorption and desorption of toluene, methyl ethyl ketone (MEK) and their binary component using activated carbon. The BET analysis was performed to identify the characteristics of the activated carbon, and the desorption characteristics with temperature were examined to find out an optimum desorption temperature. Ten cyclic experiments of adsorption-desorption were performed, where each adsorption temperature was maintained at room temperature and desorption temperature at upto 120 ℃. In case of single component cyclic test, the efficiencies of adsorption and desorption decreased as the cycle increased. MEK which has lower affinity with activated carbon than toluene showed lower efficiencies of adsorption and desorption. In case of binary component cyclic test, a typical roll-up phenomenon was observed during adsorption process, where MEK reaches at breakpoint first and then was swept out by toluene.
  1. Cho JH, Lee S, Rhee YW, Korean Chem. Eng. Res., 54(2), 239 (2016)
  2. Jeong SJ, Lee DL, Kim TY, Kim JH, Kim SJ, Cho SY, Korean Chem. Eng. Res., 40, 694 (2002)
  3. Lee HU, Kim JS, Han C, Song HK, Na BK, Korean Chem. Eng. Res., 29, 120 (1999)
  4. Rhee YW, Siheung Environmental Technology Development Center, Korea(2009).
  5. Rhee YW, Siheung Environmental Technology Development Center, Korea(2007).
  6. Rhee YW, Siheung Environmental Technology Development Center, Korea(2013).
  7. Woo MT, Master Dissertation, Seoul National University of Science And Technology, Korea(2016).
  8. Lim JK, Lee SW, Kam SK, Lee DW, Lee MG, J. Envion. Sci. Intern., 14, 977 (2003)
  9. Kwon JH, J. Environ. Sci. Intern., 14(2) (2005)
  10. Allen T, Particle Size Measurements, 4th ed., Chapman & Hall, London, 547-628 (1990).
  11. Seo MC, Master Dissertation, Korea Polytechnic University (2006).
  12. Chiang YC, Chiang PC, Huang CP, Carbon, 39, 523 (2001)
  13. Allen T, Chamoman & Hall, 4, London, 547-628 (1990).
  14. Kim HS, Chang HS, Park BB, Park YS, Min BM, J. Environ. Sci Intern., 21, 481 (1999)
  15. Park EH, Theories and Applicat. Chem. Eng., 8(2), (2002).
  16. Kwang JW, Korean Chem. Eng. Res., 45(3), 277 (2007)
  17. Ryu YK, Roh DS, Lee CH, HWAHAK KONGHAK, 36(1), 56 (1998)
  18. Park JT, Kim JS, Chung KH, Moon H, Seo G, HWAHAK KONGHAK, 32(3), 476 (1994)
  19. Yu JH, Activated carbon, Donghwa Co. in Korea, 2(2005).
  20. Kim HS, Park YS, J. Environ. Sci. Intern., 25, 977 (2003)
  21. Kapoor A, Yang RT, AIChE J., 33, 1215 (1987)
  22. Tefera DT, Hashisho Z, Philips JH, Anderson JE, Nichols M, Environ. Sci. Technol., 48, 5108 (2014)