화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.12, 1158-1162, December, 2017
Highly durable platinum nanoparticles on carbon derived from pitch-based carbon fibers for oxygen reduction reaction
E-mail:,
Highly durable platinum (Pt) catalysts for oxygen reduction reaction (ORR) were fabricated using pulverized isotropic pitch based activated carbon fibers as catalyst supports. We controlled the textural and structural properties of catalyst support by heat-treatment with various temperatures of 900, 1200, 1500, and 2000 °C. Crystallinity of the catalyst supports increased with increasing heat-treatment temperature, leading to an increase of conductivity. In addition, the catalytic activity and durability increased and the catalyst using carbon supports heat-treated at 1200 °C showed a comparable performance and superior durability to those of a commercial catalyst. It is suggested that an increase in crystallinity was attributed to prevent elimination of Pt and carbon support, which led to less degradation of catalytic activity and durability for ORR. This work showed the possibility of pitch based activated carbon fibers as a highly durable catalyst support.
  1. Mcdougall A, Fuel Cells, John Wiley & Sons, New York, 1976.
  2. Giordano N, Passalacqua E, Recupero V, Vivaldi M, Taylor EJ, Wilemski G, Electrochim. Acta, 35, 1411 (1900)
  3. Appleby AJ, J. Power Sources, 63, 280 (1966)
  4. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981 (2011)
  5. Ferreira PJ, la O' GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA, J. Electrochem. Soc., 152(11), A2256 (2005)
  6. Wang XP, Kumar R, Myers DJ, Electrochem. Solid State Lett., 9(5), A225 (2006)
  7. Guilminot E, Corcella A, Chatenet M, Maillard F, Charlot F, Berthome G, Iojoiu C, Sanchez JY, Rossinot E, Claude E, J. Electrochem. Soc., 154(11), B1106 (2007)
  8. Ha SB, Kim HS, Choi JS, Chung WS, Lee HI, Appl. Chem., 7(2), 731 (2003)
  9. Kim MS, Lim S, Song MY, Cho H, Choi Y, Yu JS, Carbon Lett, 11, 336 (2010)
  10. Kim J, Im US, Lee B, Peck DH, Yoon SH, Jung DH, Carbon Lett, 19, 72 (2016)
  11. Kim JD, Roh JS, Kim MS, Carbon Lett., 21, 51 (2017)
  12. Yu BJ, Wang CY, Chen MM, Zheng JM, Qi J, Fuel Process. Technol., 104, 155 (2012)
  13. Zhu J, Park SW, Joh HI, Kim HC, Lee S, Macromol. Res., 23(1), 79 (2015)
  14. Drbohlav J, Stevenson WTK, Carbon, 33, 713 (1995)
  15. Ogale AA, Lin C, Anderson DP, Kearns KM, Carbon, 40, 1309 (2012)
  16. Yang H, Yoon SH, Korai Y, Mochida I, Katou O, Carbon, 41, 397 (2003)
  17. Xu Z, Min C, Chem L, Liu L, Chen G, Wu N, J. Appl. Phys., 109, 054303 (2011)
  18. End M, Lee BJ, Kim YA, Kim YJ, Muramatsu H, Yanagisawa T, Hayashi T, Terrones M, Dresselhaus MS, New J. Phys., 5, 121 (2003)
  19. Yan J, Henriksen EA, Kim P, Pinczuk A, Phys. Rev. Lett., 101, 136804 (2008)
  20. Joh HI, Lee S, Kim TW, Hwang SY, Hahn JR, Carbon, 55, 299 (2013)
  21. Zhao XJ, Hayashi A, Noda Z, Kimijima K, Yagi I, Sasaki K, Electrochim. Acta, 97, 33 (2013)
  22. Fortin F, Yoon SH, Korai Y, Mochida I, Carbon, 32, 979 (1994)
  23. Jang SY, Ko S, Jeon YP, Choi J, Kang N, Kim HC, Joh HI, Lee S, J. Ind. Eng. Chem., 45, 316 (2017)
  24. Mochida I, Yoon SH, Takano N, Fortin F, Korai Y, Yokogawa K, Carbon, 34, 941 (1996)
  25. Liu H, Li T, Shi Y, Wang X, Lv J, Zhang W, J. Anal. Appl. Pyrolysis, 3160 (2014).
  26. Seong HJ, Boehman AL, Energy Fuels, 27, 1613 (2013)
  27. Meyabadi TF, Dadashian F, Sadeghi GMM, Asl HEZ, Powder Technol., 261, 232 (2014)
  28. Maiyalagan T, Pasupathi S, Pollet BG, Electrocatalysis, 6, 155 (2015)
  29. Song M, Wang Q, Zuo X, Meng Y, ECS Solid State Lett., 1, M16 (2012)
  30. Spenadel L, Boudart M, J. Phys. Chem., 64, 204 (1960)
  31. Joh JH, Seo SJ, Kim HT, Korea J. Chem. Eng., 27, 45 (2010)