화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.58, 38-44, February, 2018
Photoelectrochemical properties of Ni-doped CuO nanorods grown using the modified chemical bath deposition method
E-mail:
Ni-doped CuO nanorods were grown on a CuO film buffered with a FTO substrate using different nickel amounts via the modified chemical bath deposition method. We investigated the effect of the Ni doping concentration on the morphological, optical, structural and photoelectrochemical properties of the Ni-doped CuO nanorods. In this study, the maximum photocurrent density of -1.75 mA/cm2 at -0.55 V (vs. SCE) was obtained from the Ni-doped CuO photoelectrode with a Ni doping concentration of 1 at.% and an effective route to improve the photocurrent density of the CuO photoelectrode was proposed.
  1. Chiang CY, Aroh K, Franson N, Satsangi VR, Dass S, Ehrman S, Int. J. Hydrog. Energy, 36(24), 15519 (2011)
  2. Fujishima A, Honda K, Nature, 238, 37 (1972)
  3. Pu Y, Wang G, Chang K, Ling Y, Lin Y, Fitzmorris BC, Liu C, Lu X, Tong Y, Zhang JZ, Hsu Y, Li Y, Nano Lett., 13, 3817 (2013)
  4. Altomare M, Lee K, killian MS, Selli E, Schmuki P, Chem. Eur. J., 19, 5841 (2013)
  5. Sakthivel S, Janczarek M, Kisch H, J. Phys. Chem. B, 108(50), 19384 (2004)
  6. Lee T, Ryu H, Lee W, Ceram. Int., 41, 7582 (2015)
  7. Reitz JB, Solomon EI, J. Am. Chem. Soc., 120, 14467 (1998)
  8. Zhu YW, Yu T, Cheong FC, Xu XJ, Lim CT, Tan VBC, Thong JTL, Sow CH, Nanotechnology, 16, 88 (2005)
  9. ishihara T, Higuchi M, Takagi T, Ito M, Nishiguchi H, Takita Y, J. Mater. Chem., 8, 2037 (1998)
  10. Chiang CY, Shin Y, Aroh K, Ehrman S, Int. J. Hydrog. Energy, 37(10), 8232 (2012)
  11. Masudy-Panah S, Moakhar RS, Chua CS, Tan HR, Wong TI, Chi D, Dalapati GK, ACS Appl. Mater. Interfaces, 8, 1206 (2016)
  12. Nandy S, Maiti UN, Ghosh CK, Chattopadhyay KK, J. Phys. Condens. Matter, 21, 115804 (2009)
  13. Chauhan D, Satasangi VR, Dass S, Shrivastav R, Bull. Mater. Sci., 29, 709 (2006)
  14. Kikuchi N, Tonooka K, Thin Solid Films, 486(1-2), 33 (2005)
  15. Chiang C, Shin Y, Ehrman S, Appl. Energy, 164, 10319 (2016)
  16. Baturay S, Tombak A, kaya D, Ocak YS, Tokus M, Aydemir M, Kilicoglu T, J. Sol-Gel Sci. Technol., 78, 422 (2016)
  17. Shaislamov U, Krishnamoorthy K, Kim SJ, Chun W, Lee HJ, RSC Adv., 6, 103049 (2016)
  18. Dubale AA, Su WN, Tamirat AG, Pan CJ, Aragaw BA, Chen HM, Chen CH, Hwang BJ, J. Mater. Chem., 2, 18383 (2014)
  19. Wang L, Zhang K, Hu Z, Duan W, Cheng F, Chen J, Nano Res., 7(2), 199 (2014)
  20. Kim TG, Lee HJ, Ryu H, J. Korean Phys. Soc., 67, 1273 (2015)
  21. Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y, Nano Lett., 11, 2119 (2011)
  22. Patil PS, Kadam LD, Appl. Surf. Sci., 199(1-4), 211 (2002)
  23. Lee TH, Ryu H, Lee WJ, Ceram. Int., 41, 7582 (2015)
  24. Dholam R, Patel N, Adami M, Miotello A, Int. J. Hydrog. Energy, 34(13), 5337 (2009)
  25. kui TG, Rahman MFA, Ahmad ZA, Mohamed JJ, Adv. Mater. Res., 3, 1107 (2015)
  26. Prabhakaran D, Boothroyd AT, J. Cryst. Growth, 250(1-2), 77 (2003)
  27. Gulen Y, Bayansal F, Sahin B, Cetinkara HA, Guder HS, Ceram. Int., 39, 6475 (2013)
  28. Basith NM, Vijaya JJ, Kennedy LJ, Bououdina M, Mater. Sci. Semicond. Process, 17, 110 (2014)
  29. Kim HS, Oh H, Ryu H, Lee W, Korean J. Met. Mater., 53, 512 (2015)
  30. Kercher AK, Nagle DC, Carbon, 41, 15 (2003)
  31. Li Y, Tan B, Wu Y, Chem. Mater., 20, 567 (2008)
  32. Zhang QB, Zhang KL, Xu DG, Yang GC, Huang H, Nie FD, Liu CM, Yang SH, Prog. Mater. Sci., 60, 208 (2014)
  33. Lee M, Kim D, Yoon YT, Kim YI, Bull. Korean Chem. Soc., 35, 3261 (2014)
  34. Kozuka H, Kajimura M, J. Sol-Gel Sci. Technol., 22, 125 (2001)
  35. Oh HB, Ryu H, Lee WJ, J. Electrochem. Soc., 161(9), H578 (2014)
  36. Algar WR, Medintz IL, Dawson P(Eds.), Chemoselective and Bioorthogonal Ligation Reactions: Concepts and Applications, John Wiley & Sons, 2017.
  37. Banerjee AN, Ghosh CK, Chattopadhyay KK, Sol. Energy Mater. Sol. Cells, 89(1), 75 (2005)
  38. Young AP, Wilson WB, Schwartz CM, Phys. Rev., 121, 77 (1961)