화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.1, 106-111, January, 2018
실리카로 보강된 SSBR/ENR 블렌드의 물성 연구
Study on Properties for SSBR/ENR Blend Filled with Silica
E-mail:
초록
실리카로 보강한 솔루션-스티렌-부타디엔 고무(SSBR)와 에폭시화 천연고무(ENR)를 다양한 조성으로 블렌드를 제조하여 조성에 따른 가교특성, 모폴로지, 인장특성, 동적점탄성 그리고 열적 특성을 조사하였다. ENR의 함량이 증가할수록 가교속도가 빨라지는 모습을 보였으며 블렌드 조성물의 경우 가교도가 증가하는 모습을 보였다. ENR의 함량이 증가함에 따라 에폭시기의 영향으로 실리카 분산성의 향상을 전자현미경(SEM)과 Payne effect를 통해 확인하였다. S75/E25, S50/E50에서는 두 개의 유리전이온도(Tg)가 나타났으며 S25/E75에서는 하나의 유리전이 온도(Tg)가 나타났고 젖은 노면의 제동 특성과 인장강도, 탄성률이 높아서 S25/E75 조성물에서 가장 상용성이 높은 것으로 판단되었다. 열적 안정성은 ENR의 함량이 증가함에 따라 초기 분해 온도가 감소함을 알 수 있었다.
Solution styrene-butadiene rubber (SSBR) and epoxidized natural rubber (ENR) blends reinforced by silica had been compounded over the two-roll mill. The crosslinking characterization, morphology, tensile strength, elastic and viscos characterizations, and thermodynamic properties of blends had been investigated after processing. With the ratio of ENR increasing, the crosslinking rate and density of blends had increased. Also, the epoxy groups in blends had been also increased which will cause influence on silica dispersion and Payne effect of blends. They had been characterized by SEM and RPA. The S75/E25 blend and S50/E50 blend showed two peaks about glass transition temperature (Tg) in dynamic mechanical analysis (DMA), but the blend whose ratio was S25/E75 showed only one peak. It meant S25/E75 blend would be a good miscibility rubber material due to the larger wet grip, better tensile strength and higher elastic rate. And as for thermal stability of blends, with the ratio of ENR increased, the initial decomposition temperature of blends decreased gradually.
  1. Go YH, Go JY, Rubber Technol., 10, 108 (2009)
  2. Han SC, Choi SJ, Han MH, Rubber Technol., 2, 100 (2001)
  3. Lim KW, Ji SC, Jung KY, Elast. Compos., 44, 232 (2009)
  4. Heinrich G, Vilgis TA, Kautsch. Gummi Kunstst., 61, 368 (2008)
  5. Kim TY, Won SY, Kang SH, Cho UR, Elast. Compos., 52, 17 (2017)
  6. Luo Y, Wang R, Zhao S, Chen Y, Su H, Zhang L, Chan TW, Wu S, RSC Adv., 6, 58077 (2016)
  7. Wang MJ, Yhang P, Mahmud K, Rubber Chem. Tech., 74, 124 (2001)
  8. Ryu HS, Lee YS, Lee JC, Ha KR, Polym. Korea, 37, 308 (2012)
  9. Choi SM, Lee EK, Choi SY, Elast. Compos., 43, 147 (2008)
  10. Sengloyluan K, Sahakaro K, Dierkes WK, Noordermeer WM, Eur. Polym. J., 51, 69 (2014)
  11. Zaeimoedin TZ, Clarke J, SMR, 10, 70 (2017)
  12. Ngudsuntear C, Limtrakul S, Vatantham T, Wichien AN, Rempel TL, Arayapranee W, ITJEMST, 5, 11 (2014)
  13. Gelling IR, Morrison NJ, Rubber Chem. Technol., 57, 267 (1985)
  14. Sengloyluan K, Sahakaro K, Dierkes WK, Noordermeer JWM, Eur. Polym. J., 51, 69 (2014)
  15. Wagner MP, Rubber Chem. Technol., 49, 703 (1976)
  16. Peng Z, Kong LX, Li SD, Chen Y, Huang MF, Compos. Sci. Technol., 67, 3130 (2007)
  17. Paul DR, Newman S, Polymer Blends, Academic Press, New York, 1978.
  18. Li YJ, Shimizu H, Macromol. Rapid Commun., 26(9), 710 (2005)
  19. Potschke P, Paul DR, Macromol. Sci., 43, 87 (2003)
  20. Willemse RC, Polymer, 40(8), 2175 (1999)
  21. Lee BJ, Lim KW, Li SC, Jung KY, Kim TJ, Elast. Compos., 44, 232 (2009)
  22. Heinrich G, Dumler HB, Rubber Chem. Technol., 71, 53 (1998)
  23. Payne AR, Whittaker RE, Rubber Chem. Technol., 44, 440 (1971)
  24. Payne AR, Whittaker RE, Rubber Chem. Technol., 45, 1043 (1972)
  25. Kim LW, Yoo SH, Kim CK, Polym. Korea, 31(1), 8 (2007)
  26. Ham SK, Jung MH, Chang JH, Polym. Korea, 30(4), 298 (2006)
  27. Kim YS, Jung HM, Polym. Sci. Technol., 22, 370 (2011)
  28. Bijarimi M, Ahmad S, Rasid R, J. Elastom. Past., 46, 338 (2014)