화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.1, 133-139, January, 2018
탄소계 나노필러가 페놀수지 폼의 구조 및 물성에 미치는 영향
Effects of Carbon-based Nanofillers on the Structure and Property of Phenolic Foam
E-mail:,
초록
레졸형 페놀수지에 탄소계 나노필러인 그래핀 옥사이드(GO)와 다중벽 탄소나노튜브(MWCNT)를 0.1 wt% 이하로 첨가하여 페놀수지 폼을 제조하였으며 셀 크기, 셀 구조, 기계적 성질, 열적 성질, 음향학적 성질에 미치는 영향을 고찰하였다. 제조된 모든 페놀수지 폼들은 육각형의 닫힌 셀 구조를 형성하였으며, GO와 MWCNT를 포함하는 페놀수지 폼들은 굴곡 하중에서 순수 페놀수지 폼(control)보다 취성 파괴에 대한 높은 저항성을 나타내었다. MWCNT를 포함하는 페놀수지 폼들은 필러를 첨가하지 않은 순수 페놀수지 폼보다 작은 셀을 형성하였으며 굴곡하중 하에서 향상된 취성을 가졌다. 0.1 wt%의 GO나 MWCNT를 포함하는 페놀수지 폼은 순수 페놀수지 폼보다 2배 이상의 높은 열전도도를 나타내었으며, 저주파음과 고주파음의 차단에 효과적이었다. 필러를 첨가한 페놀수지 폼 중에서 MWCNT를 포함하는 페놀수지 폼이 500~4000 Hz 영역에서 가장 높은 흡음계수를 보였다.
Resole-type phenolic resin was mixed with carbon-based nanofillers, such as graphene oxide (GO) and multiwalled carbon nanotube (MWCNT), and the cell size, cell structure, and mechanical, thermal and acoustic properties of the phenolic foam were investigated. The closed hexagonal cell structure was observed for all foams and the cell size of MWCNT embedded phenolic foam was smaller than that of the unreinforced phenolic foam. The smaller cell resulted in the higher mechanical strength. The GO and MWCNT additions in the cell walls imparted a high resistance to brittle failure under flexural loading. The thermal conductivity of 0.1wt% of GO or MWCNT infiltrated phenolic foam increased more than two times. The transmission loss of the phenolic foam with a 0.1 wt% of GO and MWCNT was effective in the lower and higher frequency region. Among the nanofiller-contained phenolic foams, the phenolic foam with MWCNT showed the highest absorption coefficient over 500~4000 Hz region.
  1. Kim DK, Lee SB, J. Korean Ind. Eng. Chem., 17(4), 357 (2006)
  2. Shen H, Nutt S, Compos. Pt. A-Appl. Sci. Manuf., 34, 899 (2003)
  3. Lee JC, Seo JS, Kim SB, KIGAS, 17, 35 (2013)
  4. Jang SY, Kim SB, KIGAS, 20, 30 (2016)
  5. Song SA, Oh HJ, Kim BG, Kim SS, Compos. Sci. Technol., 103, 85 (2014)
  6. Li QL, Chen L, Zhang JJ, Zheng K, Zhang X, Fang F, Tian XY, Polym. Eng. Sci., 55(12), 2783 (2015)
  7. Song SA, Kim SS, The Korean Society of Mechanical Engineers Proceedings of the KSME 2013 Spring/Autum Conference, 2257 (2013).
  8. Park OK, Lee SH, Ku BC, Lee JH, Polymer Science Technology, 22, 467 (2011)
  9. Vu MC, Park GD, Bae YH, Yu MJ, An TK, Lee SG, Kim SR, Macromol. Res., 24(12), 1070 (2016)
  10. Si J, Li J, Wang S, Li Y, Jing X, Composite, 54, 166 (2013)
  11. Yang Y, Gupta MC, Nano Lett., 5, 2131 (2005)
  12. Bae YH, Kwon TS, Yu MJ, Lee BC, Kim SR, Polym. Korea, 41(2), 189 (2017)
  13. Orozco BDS, Oliet M, Alonso MV, Rojo E, Rodrıguez F, Compos. Sci. Technol., 72, 667 (2012)
  14. Yang ZJ, Yuan LL, Gu YZ, Li M, Sun ZJ, Zhang ZG, J. Appl. Polym. Sci., 130(3), 1479 (2013)
  15. Zeng CC, Hossieny N, Zhang C, Wang B, Polymer, 51(3), 655 (2010)
  16. Zhou J, Yao Z, Chen Y, Wei D, Wuv Y, Xu T, Polym. Compos., 34, 1245 (2013)
  17. Lu X, Hu Z, Composites Part B, 43, 1902 (2012)
  18. Decarvalho G, Frollini E, Dossantos WN, J. Appl. Polym. Sci., 62(13), 2281 (1996)
  19. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN, Nano Lett., 8, 902 (2008)
  20. Choudhary V, Singh BP, Mathur RB, Intech, Croatia, 2013.
  21. Wu T, Wang X, Qiu H, Gao J, Wang W, Liu Y, J. Mater. Chem., 22, 4772 (2012)
  22. Chung IR, Kim JY, Youn SC, Lee TH, Shin Kwang, Seoul, 2009.