화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.2, 574-578, February, 2018
Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction
E-mail:
Low-dimensional semiconductor p-n junctions as components for optoelectronic devices are considered to be more promising than thin film equivalents. We fabricated heterojunction p-n solar blind photodiodes with the configuration of n-type β-Ga2O3 nanobelts contacted onto p-Si substrates. The junction between β-Ga2O3 and Si was formed by van der Waals interactions. The fabricated heterojunction p-n diodes exhibited typical rectifying current. voltage characteristics, with a rectification ratio as high as 1.56×104 at ±20 V and an ideality factor of approximately eight. Photoresponsive measurements showed that the heterojunction p-n diodes had a high sensitivity and selectivity for light at a wavelength of 254 nm, with fast response and decay characteristics. For the fast-response components, the response time constant was 4.06 s and the decay time constant was 0.16 s. The exfoliated β-Ga2O3 nanobelt/Si p-n heterojunction presented here constitutes a functional unit for low-dimensional ultra-wide bandgap electronic and optoelectronic devices.
  1. Onuma T, Saito S, Sasaki K, Masui T, Yamaguchi T, Honda T, Higashiwaki M, Japan J. Appl. Phys., 54, 112601 (2015)
  2. He H, Orlando R, Blanco M, Pandey R, Amzallag E, Baraille I, Rerat M, Phys. Rev. B, 74, 195123 (2006)
  3. Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S, Appl. Phys. Lett., 100, 013504 (2012)
  4. Mastro MA, Kuramata A, Calkins J, Kim J, Ren F, Pearton SJ, ESC J. Solid State Sci. Technol., 6(5), 356 (2017)
  5. Sasaki K, Higashiwaki M, Kuramata A, Masui T, Yamakoshi S, J. Cryst. Growth, 378, 591 (2013)
  6. Higashiwaki M, Sasaki K, Kamimura T, Wong MH, Krishnamurthy D, Kuramata A, Masui T, Yamakoshi S, Appl. Phys. Lett., 103, 123511 (2013)
  7. An YH, Guo DY, Li SY, Wu ZP, Huang YQ, Li PG, Li LH, Tang WH, J. Phys. D-Appl. Phys., 49, 285111 (2016)
  8. Guo DY, Shi HZ, Qian YP, Lv M, Li PG, Su YL, Liu Q, Chen K, Wang SL, Cui C, Li CR, Tang WH, Semicond. Sci. Technol., 32, 03LT01 (2017)
  9. Kong WY, Wu GA, Wang KY, Zhang TF, Zou YF, Wang DD, Luo LB, Adv. Mater., 28(48), 10725 (2016)
  10. Chen Z, Wang X, Zhang F, Noda X, Saito K, Tanaka T, Nishio M, Arita M, Guo Q, Appl. Phys. Lett., 109, 022107 (2016)
  11. Qian F, Gradecak S, Li Y, Wen CY, Lieber CM, Nano Lett., 5, 2287 (2005)
  12. Hou Y, Kim JS, Ashkenazi S, O’Donnell M, Guo L, Appl. Phys. Lett., 89, 093901 (2006)
  13. Lupan W, Ursaki VV, Chai G, Chow L, Emelchenko GA, Tiginyanu IM, Gruzintsev AN, Redkin AN, Sens. Actuators B-Chem., 144, 56 (2010)
  14. Li YB, Tokizono T, Liao MY, Zhong MA, Koide Y, Yamada I, Delaunay JJ, Adv. Funct. Mater., 20(22), 3972 (2010)
  15. Zou RJ, Zhang ZY, Liu Q, Hu JQ, Sang LW, Liao MY, Zhang WJ, Small, 10, 1848 (2014)
  16. Li L, Auer E, Liao MY, Fang XS, Zhai TY, Gautam UK, Lugstein A, Koide Y, Bando Y, Golberg D, Nanoscale, 3, 1120 (2011)
  17. Tian W, Zhi CY, Zhai TY, Chen SM, Wang X, Liao MY, Golberg D, Bando Y, J. Mater. Chem., 22, 17984 (2012)
  18. Feng W, Wang XN, Zhang J, Wang LF, Yang B, J. Mater. Chem., 2, 3254 (2014)
  19. Lee GH, Yu YJ, Cui X, Petrone N, Lee CH, Choi MS, Lee DY, Lee C, Yoo WJ, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J, ACS Nano, 7(9), 7931 (2013)
  20. Feng Z, Chen B, Qian S, Xu L, Feng L, Yu Y, Zhang R, Chen J, Li Q, Li Q, Sun C, Zhang H, Liu J, Pang W, Zhang D, 2D Mater., 3, 035021 (2016)
  21. Kumar S, Sarau G, Tessarek C, Bashouti MY, Hahnel A, Christiansen S, Singh R, J. Phys. D-Appl. Phys., 47, 435101 (2014)
  22. Oh S, Kim J, Ren F, Pearton SJ, Kim J, J. Mater. Chem., 4, 9245 (2016)
  23. Kim J, Oh S, Mastro MA, Kim J, Phys. Chem. Chem. Phys., 18, 15760 (2016)
  24. Ahman J, Svensson G, Albertsson J, Acta Crystallogr. Sect. A, 52, 1336 (1996)
  25. Guo XC, Hao NH, Guo DY, Wu ZP, An YH, Chu XL, Li LH, Li PG, Lei M, Tang WH, J. Alloy. Compd., 660, 136 (2016)
  26. Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C, Li L, Tang W, Opt. Mater. Express., 4, 1067 (2014)
  27. Guo DY, Wu ZP, An YH, Guo XC, Chu XL, Sun CL, Li LH, Li PG, Tang WH, Appl. Phys. Lett., 105, 023507 (2014)
  28. Kwon Y, Lee G, Oh S, Kim J, Pearton SJ, Ren F, Appl. Phys. Lett., 110, 131901 (2017)
  29. Sze SM, Ng KK, Physics of Semiconductor Devices, 3rd Ed., Wiley-Interscience (2007).
  30. Chen Z, Nishihagi K, Wang X, Saito K, Tanaka T, Nishio M, Arita M, Guo Q, Appl. Phys. Lett., 109, 102106 (2016)
  31. Lovejoy TC, Chen R, Zheng X, Villora EG, Shimamura K, Yoshikawa H, Yamashita Y, Ueda T, Kobayashi K, Dunham ST, Ohuchi FS, Olmstead MA, Appl. Phys. Lett., 100, 181602 (2012)
  32. Kokubun Y, Kubo S, Nakagomi S, Appl. Phys. Express., 9, 091101 (2016)