Korean Chemical Engineering Research, Vol.56, No.1, 14-23, February, 2018
Effect of Dodecylbenzene Sulfonic Acid on the Behavior of Asphaltene Aggregation in a Solvent Deasphalting System
E-mail:,
The effect of dodecylbenzene sulfonic acid (DBSA) with different addition amount of DBSA (MDBSA), temperatures and solvent-to-oil ratio (SOR, v/v) on asphaltene aggregation in a solvent deasphalting system was investigated. Increasing the MDBSA at SOR 10 and 55 oC caused the asphaltene removal ratio (ARR) to increase first, then maximize at 1 wt% of MDBSA and then decrease continuously. Based on the SARA (saturate, aromatic, resin, asphaltene) composition, the adsorption amount of DBSA on the asphaltene surface and the self-aggregation of the DBSA, the reason for the change in ARR with MDBSA was found due to the adsorption mechanism. In addition, the asphaltene-resin- DBSA colloidal size confirmed the change of adsorption behavior between the asphaltene and DBSA. Based on the results of this study, a hypothetical adsorption mechanism of DBSA on asphaltene aggregation in the solvent deasphalting system was conceived of and proposed.
Keywords:Asphaltene removal ratio;Addition amount of DBSA;The level of self-aggregation of DBSA;Asphaltene colloid size;Adsorption mechanism
- Banerjee DK, Penn Well Corp., USA, 3-10, 101-112(2012).
- Al-Sahhaf TA, Fahim MA, Elkilani AS, Fluid Phase Equilib., 194, 1045 (2002)
- Rogel E, Leon O, Energy Fuels, 15(5), 1077 (2001)
- Andersen SI, Speight JG, Pet. Sci. Technol., 19(1-2), 1 (2001)
- Lee JM, Shin S, Ahn S, Chun JH, Lee KB, Mun S, Jeon SG, Na JG, Nho NS, Fuel Process. Technol., 119, 204 (2014)
- Huc AY, Editions Technip, France, 231-256(2011).
- Alboudwarej H, Beck J, Svrcek WY, Yarranton HW, Akbarzadeh K, Energy Fuels, 16(2), 462 (2002)
- Ahn S, Shin S, Im SI, Lee KB, Nho NS, Korean J. Chem. Eng., 33(1), 265 (2016)
- Pan H, Firoozabadi A, AIChE. J., 46, 416 (2000)
- Soorghali F, Zolghadr A, Ayatollahi S, Energy Fuels, 29(9), 5487 (2015)
- Leon O, Contreras E, Rogel E, Dambakli G, Espidel J, Acevedo S, Energy Fuels, 15(5), 1028 (2001)
- Leon O, Rogel E, Urbina A, Andujar A, Lucas A, Langmuir, 15(22), 7653 (1999)
- Junior LCR, Ferreira MS, da Silva Ramos AC, J. Pet. Sci. Eng., 51, 26 (2006)
- Chang CL, Fogler HS, Langmuir, 10(6), 1749 (1994)
- Chang CL, Fogler HS, Langmuir, 10(6), 1758 (1994)
- Hashmi SM, Zhong KX, Firoozabadi A, RSC Advances, 8, 8778 (2012)
- Goual L, Firoozabadi A, AIChE J., 50(2), 470 (2004)
- Wei D, Orlandi E, Simon S, Sjoblom J, J. Therm. Anal. Calorim., 120(3), 1835 (2015)
- ASTM D 3279, Standard Test Method for n-Heptane Insolubles; ASTM International: USA, DOI: 10.1520/D3279-12E01.
- Fan TG, Buckley JS, Energy Fuels, 16(6), 1571 (2002)
- Fan T, Wang J, Buckley JS, SPE/DOE Improved Oil Recovery Symposium, April, Tulsa, DOI: 10.2118/75228-MS (2002).
- Nelson GW, Perry M, He SM, Zechel DL, Horton JH, Colloids Surf. B: Biointerfaces, 78(1), 61 (2010)
- Xu XF, Zhang PZ, Coal Conversion, 19(1), 72 (1996)
- Li C, Wang JQ, Sui LT, Cui M, Deng WN, Acta Petrol Sin: Pet Process Section, 29(3), 459 (2013)
- Wang JQ, Li C, Zhang LL, Que GH, Li ZM, Energy Fuels, 23(7), 2625 (2009)
- Abdallah WA, Taylor SD, J. Phys. Chem., 112(48), 48963 (2008)
- Ramalho JBVS, Lechuga FC, Lucas EF, Quim. Nova., 33(8), 1664 (2010)
- Mansur CRE, de Melo AR, Lucas EF, Energy Fuels, 26(8), 4988 (2012)
- Pereira JC, Lopez I, Salas R, Silva F, Fernandez C, Urbina C, Lopez JC, Energy Fuels, 21(3), 1317 (2007)
- Pfeiffer J, Saal RNJ, J. Phys. Chem., 44(2), 139 (1940)
- Alcazar-Vara LA, Zamudio LS, Buenrostro-Gonzalez E, J. Dispersion Sci. Technol., 37(11), 1544 (2016)
- Sun ZH, Li D, Ma HX, Tian PP, Li XK, Li WH, Zhu YH, Fuel Process. Technol., 138, 413 (2015)
- Seshadri KS, Young DC, Cronauer DC, Fuel, 64(1), 22 (1985)
- Mullins OC, Sheu EY, Hammami A, Marshall AG, Springer, New York, 89-202(2007).
- Andersen SI, Christensen SD, Energy Fuels, 14(1), 38 (2000)
- Zhang J, Qiu Y, Yu DY, Chin. J. Appl. Chem., 26(12), 1480 (2009)
- Somasundaran P, Zhang L, J. Pet. Sci. Eng., 52(1-4), 198 (2006)