화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.56, No.1, 14-23, February, 2018
Effect of Dodecylbenzene Sulfonic Acid on the Behavior of Asphaltene Aggregation in a Solvent Deasphalting System
E-mail:,
The effect of dodecylbenzene sulfonic acid (DBSA) with different addition amount of DBSA (MDBSA), temperatures and solvent-to-oil ratio (SOR, v/v) on asphaltene aggregation in a solvent deasphalting system was investigated. Increasing the MDBSA at SOR 10 and 55 oC caused the asphaltene removal ratio (ARR) to increase first, then maximize at 1 wt% of MDBSA and then decrease continuously. Based on the SARA (saturate, aromatic, resin, asphaltene) composition, the adsorption amount of DBSA on the asphaltene surface and the self-aggregation of the DBSA, the reason for the change in ARR with MDBSA was found due to the adsorption mechanism. In addition, the asphaltene-resin- DBSA colloidal size confirmed the change of adsorption behavior between the asphaltene and DBSA. Based on the results of this study, a hypothetical adsorption mechanism of DBSA on asphaltene aggregation in the solvent deasphalting system was conceived of and proposed.
  1. Banerjee DK, Penn Well Corp., USA, 3-10, 101-112(2012).
  2. Al-Sahhaf TA, Fahim MA, Elkilani AS, Fluid Phase Equilib., 194, 1045 (2002)
  3. Rogel E, Leon O, Energy Fuels, 15(5), 1077 (2001)
  4. Andersen SI, Speight JG, Pet. Sci. Technol., 19(1-2), 1 (2001)
  5. Lee JM, Shin S, Ahn S, Chun JH, Lee KB, Mun S, Jeon SG, Na JG, Nho NS, Fuel Process. Technol., 119, 204 (2014)
  6. Huc AY, Editions Technip, France, 231-256(2011).
  7. Alboudwarej H, Beck J, Svrcek WY, Yarranton HW, Akbarzadeh K, Energy Fuels, 16(2), 462 (2002)
  8. Ahn S, Shin S, Im SI, Lee KB, Nho NS, Korean J. Chem. Eng., 33(1), 265 (2016)
  9. Pan H, Firoozabadi A, AIChE. J., 46, 416 (2000)
  10. Soorghali F, Zolghadr A, Ayatollahi S, Energy Fuels, 29(9), 5487 (2015)
  11. Leon O, Contreras E, Rogel E, Dambakli G, Espidel J, Acevedo S, Energy Fuels, 15(5), 1028 (2001)
  12. Leon O, Rogel E, Urbina A, Andujar A, Lucas A, Langmuir, 15(22), 7653 (1999)
  13. Junior LCR, Ferreira MS, da Silva Ramos AC, J. Pet. Sci. Eng., 51, 26 (2006)
  14. Chang CL, Fogler HS, Langmuir, 10(6), 1749 (1994)
  15. Chang CL, Fogler HS, Langmuir, 10(6), 1758 (1994)
  16. Hashmi SM, Zhong KX, Firoozabadi A, RSC Advances, 8, 8778 (2012)
  17. Goual L, Firoozabadi A, AIChE J., 50(2), 470 (2004)
  18. Wei D, Orlandi E, Simon S, Sjoblom J, J. Therm. Anal. Calorim., 120(3), 1835 (2015)
  19. ASTM D 3279, Standard Test Method for n-Heptane Insolubles; ASTM International: USA, DOI: 10.1520/D3279-12E01.
  20. Fan TG, Buckley JS, Energy Fuels, 16(6), 1571 (2002)
  21. Fan T, Wang J, Buckley JS, SPE/DOE Improved Oil Recovery Symposium, April, Tulsa, DOI: 10.2118/75228-MS (2002).
  22. Nelson GW, Perry M, He SM, Zechel DL, Horton JH, Colloids Surf. B: Biointerfaces, 78(1), 61 (2010)
  23. Xu XF, Zhang PZ, Coal Conversion, 19(1), 72 (1996)
  24. Li C, Wang JQ, Sui LT, Cui M, Deng WN, Acta Petrol Sin: Pet Process Section, 29(3), 459 (2013)
  25. Wang JQ, Li C, Zhang LL, Que GH, Li ZM, Energy Fuels, 23(7), 2625 (2009)
  26. Abdallah WA, Taylor SD, J. Phys. Chem., 112(48), 48963 (2008)
  27. Ramalho JBVS, Lechuga FC, Lucas EF, Quim. Nova., 33(8), 1664 (2010)
  28. Mansur CRE, de Melo AR, Lucas EF, Energy Fuels, 26(8), 4988 (2012)
  29. Pereira JC, Lopez I, Salas R, Silva F, Fernandez C, Urbina C, Lopez JC, Energy Fuels, 21(3), 1317 (2007)
  30. Pfeiffer J, Saal RNJ, J. Phys. Chem., 44(2), 139 (1940)
  31. Alcazar-Vara LA, Zamudio LS, Buenrostro-Gonzalez E, J. Dispersion Sci. Technol., 37(11), 1544 (2016)
  32. Sun ZH, Li D, Ma HX, Tian PP, Li XK, Li WH, Zhu YH, Fuel Process. Technol., 138, 413 (2015)
  33. Seshadri KS, Young DC, Cronauer DC, Fuel, 64(1), 22 (1985)
  34. Mullins OC, Sheu EY, Hammami A, Marshall AG, Springer, New York, 89-202(2007).
  35. Andersen SI, Christensen SD, Energy Fuels, 14(1), 38 (2000)
  36. Zhang J, Qiu Y, Yu DY, Chin. J. Appl. Chem., 26(12), 1480 (2009)
  37. Somasundaran P, Zhang L, J. Pet. Sci. Eng., 52(1-4), 198 (2006)