- Previous Article
- Next Article
- Table of Contents
Advanced Powder Technology, Vol.29, No.1, 1-8, 2018
Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications
Micro porous hydroxyapatite (HAp) had drawn great attention in the field of tissue engineering due to its numerous applications such as tissue regeneration, dental, drug delivery, and adsorption and desorption of substances etc. The chemical synthesis of HAp is often faced with the high cost of starting materials and often lacks the presence of beneficial ions which can promote biological reactions. This paper examined a novel application of pig bone waste for the synthesis of HAp via heat treatment between 600 and 1000 degrees C. Thus synthesized powder was characterized by X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Thermogravimetric analysis (TGA), Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX) and Transmission electron microscopy (TEM). XRD results revealed the main characteristic peaks of single phase HAp powder, while the presence of various functional groups such as PO43-, CO32- and OH- corresponding to HAp were observed by FT-IR analysis. The elemental composition of as-synthesized HAp powder as observed by EDX showed the presence of Ca and P in addition to some beneficial metals such as Na, K, Mg and Si which plays vital roles in biological applications. SEM and TEM observation confirmed the microscopic sctructure of the as-synthesized HAp to be rod-like morphology with 38-52 nm in length. Porous HAp scaffold up to 65% porosity could be prepared using ammonium bicarbonate as pore forming agent. Therefore, bio-waste such as pig bones can be utilized in the synthesis of porous hydroxyapatite scaffold which can serve as an alternative for the conventional chemical method. (c) 2017 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.