화학공학소재연구정보센터
Applied Catalysis B: Environmental, Vol.223, 60-66, 2018
The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping
A systematic study was carried out to investigate the potential of manganese nitride related materials for ammonia production. A-Mn-N (A= Fe, Co, K, Li) materials were synthesised by nitriding their oxide counterparts at low temperature using NaNH2 as a source of reactive nitrogen. The reactivity of lattice nitrogen was assessed using ammonia synthesis as a model reaction. In the case of Mn3N2, limited reactivity was observed and only 3.1% of the available lattice nitrogen was found to be reactive towards hydrogen to yield ammonia while most of the lattice nitrogen was lost as N-2. However, the presence of a co-metal played a key role in shaping the nitrogen transfer properties of manganese nitride and impacted strongly upon its reactivity. In particular, doping manganese nitride with low levels of lithium resulted in enhanced reactivity at low temperature. In the case of the Li-Mn-N system, the fraction of ammonia formed at 400 degrees C corresponded to the reaction of 15% of the total available lattice nitrogen towards hydrogen. Li-Mn-N presented high thermochemical stability after reduction with hydrogen which limited the regeneration step using N-2 from the gas phase. However, the results presented herein demonstrate the Li-Mn-N system to be worthy of further attention. (C) 2017 The Authors. Published by Elsevier B.V.