Applied Surface Science, Vol.430, 438-447, 2018
Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible-light photocatalytic performance
Ultrafine anatase N-doped TiO2 nanocrystals modified with carbon (denoted as N-doped TiO2/C) were successfully prepared via a facile and low-cost approach, using titanium tetrachloride, aqueous ammonia and urea as starting materials. The phase composition, surface chemical composition, morphological structure, electronic and optical properties of the as-prepared photocatalysts were well characterized and analyzed. On the basis of Raman spectral characterization combining with the results of X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM), it could be concluded that N dopant ions were successfully introduced into TiO2 crystal lattice and carbon species were modified on the surface or between the nanoparticles to form N-doped TiO2/C nanocomposites. Compared with that of bare TiO2, the adsorption band edge of N-doped TiO2/C nanocomposites were found to have an evident red-shift toward visible light region, implying that the bandgap of N-doped TiO2/C nanocomposites is narrowed and the visible light absorption capacity is significantly enhanced due to N doping and carbon modification. The photoactivity of the as-prepared photocatalytsts was tested by the degradation of Rhodamine B (RhB) under visible light (lambda > 420 nm), and the results showed that the N-doped TiO2/C nanocomposites exhibited much higher photodegradation rate than pure TiO2 and N-doped TiO2, which was mainly attributed to the synergistic effect of the enhanced light harvesting, augmented catalytic active sites and efficient separation of photogenerated electron-hole pairs. (C) 2017 Elsevier B.V. All rights reserved.