Applied Surface Science, Vol.428, 900-905, 2018
Investigation of plasmon properties of silver microsphere array demonstrated experimentally by tip-enhanced Raman spectroscopy
Due to high spatial resolution and extraordinarily high detection sensitivity of tip-enhanced Raman spectroscopy (TERS), it has attracted more and more attention. However, the tip size and shape, and tip substrate distance have a large impact on the TERS enhancement properties. In this study, a silver micro sphere array was prepared on a Polystyrene (PS) microsphere array by vacuum thermal evaporation. And the correlation between the properties of two-dimensional surface-enhanced Raman scattering (SERS) mapping of rhodamine 6G (Rh6G) absorbed on the silver microsphere array and the polarization direction of the incident light was investigated. The effect of the location of the tip on the surface plasmon distribution of the silver microsphere array was also revealed in TERS. In addition, the surface electromagnetic field distribution of the silver microsphere array was simulated by three-dimensional finite-difference time domain (3D-FDTD) method. These results show that the distribution of 'hot spots' on the surface of the silver microsphere array has a dependency on the polarization direction of the incident laser. Moreover, with the introduction of the tip, the 'hot spot' on the surface of the silver microsphere array becomes much more localized and largely enhanced. These results obtained in this paper may have some significance for further studies on the surface plasmon resonance bio-sensing. (C) 2017 Published by Elsevier B.V.
Keywords:Tip-enhanced Raman spectroscopy (TERS);Silver microsphere array;Three-dimensional finite difference time domain (3D-FDTD);Surface-enhanced Raman scattering mapping