화학공학소재연구정보센터
Applied Surface Science, Vol.427, 156-161, 2018
Electric field induced spin polarization oscillation in nonmagnetic benzene/Cu(100) interface: First principles calculations
First-principles calculation are presented to study the influences of external electric fields on the spin polarization properties of benzene/Cu(100) system which do not contain any magnetic atom. Our simulations show that an obvious spontaneous spin polarization oscillation occurred in the benzene molecule when the electric fields are applied. The density of states (DOS), spin density distributions, charge transfer properties are also obtained. It is found that the p-d orbital coupling between the benzene molecule and the electrode leads to spin non-degeneration of the DOS near the fermi energy, so the transferred charges from the Cu atoms to the molecule will fill these spin non-degenerate coupled orbitals, and then the benzene molecule becomes spin polarized. The strength of the p-d orbital coupling as well as the transferred charges oscillated with the external electric fields, which induce spin polarization oscillation. The results are favorable for the understanding of spin polarization properties in organic/nonmagnetic metal structures. (C) 2017 Elsevier B.V. All rights reserved.