Biomacromolecules, Vol.18, No.12, 4196-4205, 2017
A Bottom-Up Synthesis of Vinyl-Cellulose Nanosheets and Their Nanocomposite Hydrogels with Enhanced Strength
Extracted nanocellulose from natural resources commonly requires modification before it is used as an effective nanofiller. In the present study, through an enzymatic polymerization of alpha-D-glucose 1-phosphate from the primer 2(glucosyloxy)ethyl methacrylate (GEMA), a novel type of two-dimensional methacrylate-containing cellulose nanosheets (CNS) with a thickness of about 6 nm, named as GEMA-CNS, was directly synthesized under a mild condition by a "bottom-up" method. The structure and morphology of GEMA-CNS were characterized by H-1-nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization time-of-flight mass spectra (MALDI-TOF MS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Afterward, the obtained GEMA-CNS was covalently incorporated into poly(ethylene glycol) matrix through thiol ene Michael addition, fabricating a series of GEMA-CNS-based nanocomposite hydrogels. The addition of GEMA-CNS effectively improved the mechanical strength and altered the internal network structures of hydrogels; additionally, the swelling/biodegradation behaviors of gels in phosphate buffer saline (pH 7.4) at 37 degrees C were affected to some degree. This species of property-tunable hydrogels with GEMA-CNS dosage demonstrates potential applications in tissue engineering. The current presentation opens a new road for direct enzymatic preparation of reactive nanocellulose and its novel applications in nanocomposite materials.