화학공학소재연구정보센터
Biomacromolecules, Vol.18, No.12, 4316-4322, 2017
Cofibrillization of Pathogenic and Functional Amyloid Proteins with Gold Nanoparticles against Amyloidogenesis
Biomimetic nanocomposites and scaffolds hold the key to a wide range of biomedical applications. Here we show, for the first time, a facile scheme of cofibrillizing pathogenic and functional amyloid fibrils via gold nanoparticles (AuNPs) and their applications against amyloidogenesis. This scheme was realized by beta-sheet stacking between human islet amyloid polypeptide (IAPP) and the beta-lactoglobulin "corona" of the AuNPs, as revealed by transmission electron microscopy, 3D atomic force microscopy, circular dichroism spectroscopy, and molecular dynamics simulations. The biomimetic AuNPs eliminated IAPP toxicity, enabled Xray destruction of IAPP amyloids, and allowed dark-field imaging of pathogenic amyloids and their immunogenic response by human T cells. In addition to providing a viable new nanotechnology against amyloidogenesis, this study has implications for understanding the in vivo cross-talk between amyloid proteins of different pathologies.