Chemical Engineering Journal, Vol.334, 162-171, 2018
One dimensional and coaxial polyaniline@tin dioxide@multi-wall carbon nanotube as advanced conductive additive free anode for lithium ion battery
In this paper, we design a novel one dimensional and coaxial polyaniline@tin dioxide@multi-wall carbon nanotube (PANI@SnO2@MWCNT) composite as advanced conductive additive free anode material for the lithium ion battery. The SnO2 nanoparticles (similar to 5 nm) are firstly fixed on the conductive MWCNT skeleton by self-assembling the nano-sized SnO2 particles on the surface of MWCNT with the assist of surfactant P123 then followed by in-situ coating a flexible layer of PANI with excellent electron and lithium ion conductivity. The one dimensional and coaxial PANI@SnO2@MWCNT can effectively accommodate the volume expansion of SnO2 nanoparticles during lithiating and delithiating via the wrapping of the flexible coating layer of PANI and the buffer of the one dimensional MWCNT. Moreover, the electronic and lithium ionic conductivities of the composite are also obviously improved by the synergistic action between the PANI and MWCNT. As a result, the PANI@SnO2@MWCNT composite exhibits an excellent rate capacity and stable cycling performance even without the adding of the conductive additive. (C) 2017 Published by Elsevier B.V.
Keywords:PANI@SnO2@MWCNT composite;One dimension;Coaxial;Conductive additive free anode;Lithium ion battery