화학공학소재연구정보센터
Chemical Engineering Science, Vol.174, 222-228, 2017
Fungi residue derived carbon as highly efficient hydrogen peroxide electrocatalyst
In electrochemical devices, the reduction of dissolved oxygen in electrolyte can achieve on-site production of hydrogen peroxide. The industrial viability of the process strongly depends on cathode electrocatalyst. However, current catalysts rely on rare, noble metals and their composite. Thus, it remains a great challenge of cost-effective catalyst with both high activity and selectivity. Herein, we made use of extremely low-cost fungi residue biomass, developing a multi-non-precious metal doped carbon catalyst (named as FRC) for H2O2 electrogeneration by facile in-situ synthesis. The one-step prepared FRC balances the performance of different metal oxides and exhibits not only high activity but also high selectivity at a spacious potential range. Specifically, the current density for ring reaches 0.45 mA cm(-2) at -0.5 V (vs SCE). Besides, the selectivity achieves 98% and remain above 91% in wide potential range (-0.7 similar to -0.3 V), which exceeds almost all metal contained carbon materials to our knowledge. As the first study of fungi residue towards H2O2 electrogeneration, this novel approach provides a highly promising and low cost electrocatalyst for real production, moreover, exploring a new direction for H2O2 electrocatalyst development. (C) 2017 Elsevier Ltd. All rights reserved.