화학공학소재연구정보센터
Composite Interfaces, Vol.25, No.1, 47-67, 2018
Giant permittivity of three phase polymer nanocomposites obtained by modifying hybrid nanofillers with polyvinylpyrrolidone
In this work, the combination of graphene decorated with graphene quantum dots (G-D-GQDs) and barium titanate (BaTiO3) nanoparticles filled poly (vinyledene fluoride) (PVDF) nanocomposites are prepared using solvent casting method. The modification of G-D-GQDs and BaTiO3 nanoparticles with polyvinyl pyrrolidone (PVP) show finer dispersion in PVDF matrix as compared to unmodified G-D-GQDs and BaTiO3 nanoparticles in PVDF matrix. XRD of PVDF nanocomposites shows the formation of and form of PVDF crystals. The incorporation of the combination of PVP modified BaTiO3 nanoparticles and G-D-GQDs in PVDF matrix show a decrease in crystallization temperature (T-c), percent crystallinity (X-c) and increase in thermal stability as compared to unmodified PVDF/BaTiO3/G-D-GQDs nanocomposites, due to interaction of PVP modified nanoparticles with PVDF. Further, the incorporation of the combination of 20wt.% BaTiO3 nanoparticles and 3wt.% G-D-GQDs in PVDF matrix show a giant dielectric constant. The giant dielectric constant is achieved due to accumulation of more charges across conductor-insulator interface, more numbers of microcapacitor formed and enhanced interfacial compatibility between BaTiO3/G-D-GQDs with PVDF through PVP. The loss tangent (tan ) of PVP modified G-D-GQDs and BaTiO3 nanoparticles and its PVDF nanocomposites is low due to lower leakage current, which make the material suitable for various applications. [GRAPHICS] .