화학공학소재연구정보센터
Energy Conversion and Management, Vol.151, 324-333, 2017
Nickel sulfide, nickel phosphide and nickel carbide catalysts for bio-hydrotreated fuel production
A series of nickel catalysts i.e. nickel sulfide (NiS), nickel phosphide (NiP) and nickel carbide (NiC) was investigated for hydrotreating of spent coffee oil to produce bio-hydrotreated fuel (BHF). Catalytic tests were carried out at 375-425 degrees C and 20-40 bar of initial H-2 pressure (before heating) with reaction time of 0-3 h. The activity of the catalysts are in the order of NiC > NiP > NiS; however NiC tended to promote cracking reaction resulting in high gasoline and gaseous yields. On the other hand, although NiS gives the lowest oil conversion, it is favorable to diesel yield with lowest methanation and cracking activity. Compared with decarboxylation (DCO2) and hydrodeoxygenation (HDO), decarbonylation (DCO) was the major route for deoxygenation of coffee oil for all the catalysts. The ratio of (DCO + DCO2) to HDO (as represented by Cn-1/C-n) decreased in the order NiS > NiC > NiP. Ketones as intermediate products (ca. 3 wt%) were detected in case of NiP. They could be generated via rearrangement of alcohol and keto-enol tautomerism. Significant amount of aromatics (4 wt%) with some isomerization products (0.9 wt%) can also be observed in NiS catalyzed liquid products while trace amount of these compounds were detected for NiP and NiC catalysts. Physiochemical analysis of the diesel fraction exhibited satisfactory properties. The density and kinematic viscosity were consistent with the specification of commercial bio-hydrogenated diesel, NExBTL. Since main products are straight chain hydrocarbons, high cetane index ( > 110) could be achieved.