화학공학소재연구정보센터
Inorganic Chemistry, Vol.56, No.22, 14111-14117, 2017
Efficient Gas-Sensing for Formaldehyde with 3D Hierarchical Co3O4 Derived from Cos-Based MOF Microcrystals
Detecting formaldehyde at low operating temperature and maintaining long-term stability are of great significance. In this work, a hierarchical Co3O4 nanostructure has been fabricated by calcining Cos-based metal organic framework (MOP) micro crystals. Co3O4-350 particles were used for efficient gas-sensing for the detecting of formaldehyde vapor at lower working temperature (170 degrees C), low detection limit of 10 ppm, and long-term stability (30 days), which not only is the optimal value among all reported pure Co3O4 sensing materials for the detection of formaldehyde but also is superior to that of majority of Co3O4-based composites. Such extraordinarily efficient properties might be resulted from hierarchically structures, larger surface area and unique pore structure. This strategy is further confirmed that MOFs, especially Co-clusters MOFs, could be used as precursor to synthesize 3D nanostructure metal oxide materials with high-performance, which possess high porosity and more.active sites and shorter ionic diffusion lengths.