화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.43, No.1, 354-362, 2018
Safe heating-up of a full scale SOFC system using 3D multiphysics modelling optimisation
Heating-up strategies of full scale solid oxide fuel cell (SOFC) systems still affect the safe operation of the system and incorporation of the technology into the global energy sector. To ensure rapid start-up times whilst retaining the structural reliability of the SOFC system components, requires a safe heating-up operation. To master a controlled heating-up stage, detailed understanding of the component interaction and multiphysics within a fuel cell system is required. State of the art dynamic fuel cell system modelling comprises sub-models of the assembly, or is based on empirical nature. However, invaluable information of the multiphysics inside the system is lost. Therefore, it is of paramount importance to understand and improve the knowledge of the detailed processes, occurring within the interacting components. The effect of integrating different electrical heater cartridges at different locations has been thoroughly investigated to optimise the heating up of the system. The study utilises a previously developed and experimentally validated full scale three dimensional planar type SOFC system model to mitigate experimental costs and shed light on the details, occurring within the system. A comparison to a simplified variant of the model has been added to shed light on its effect on the results. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.