화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.512, 801-811, 2018
Preparation of fluorescently labeled silica nanoparticles using an amino acid-catalyzed seeds regrowth technique: Application to latent fingerprints detection and hemocompatibility studies
The efficiency of an amino acid catalyzed seed regrowth technique (ACSRT) in synthesizing twelve fluorescently labeled core-shell silica nanoparticles (FLSNPs) with tunable sizes, tailored hydrophobicity, low polydispersity as well as high labeling efficiency and minimized dye leakage using different combinations of organosilicate monomers and fluorophores have been systematically investigated in this report. The utilization of some of these FLSNPs in some applications that are facilitated by hydrophobicity such as developing and visualizing latent fingerprints (LFPs) on different surfaces was also investigated. The non-specific binding affinity of the developed nanoparticles to human serum albumin (HSA) and immunoglobulin G (IgG) has also been studied. Fluorescein, fluorescein isothiocyanate and its more hydrophilic butenamine derivative (WA6) have been used in this study. Also, the alkoxysilane precursor, tetraethoxyorthosilicate (TEOS) and its binary mixture with phenyltriethoxysilane (PTEOS) or 3aminopropyl triethoxysilane (APTES) have been used in preparing the FLSNPs with tailored compositions for the core and shell of the nanoparticles. The mean diameters of the PTEOS-coated FLSNPs were between 33.4 5.9 and 42.2 10.8 nm as shown by the SEM measurements. The obtained results highlight the advantages of having a hydrophobic surface along with proper selection of the monomers forming the core to match the properties of the fluorescent reporters for clear detection of LFPs even using dyes of low hydrophobicity such as fluorescein and WA6. Furthermore, some of the developed FLSNPs were compared with bare silica nanoparticles in terms of nonspecific protein adsorption and hemolysis. The obtained results proved that the selected FLSNPs had a superior hemocompatibility in comparison with bare silica nanoparticles. These FLSNPs could also be used in some bio-related and diagnostic applications such as immunoassays and cell imaging purposes. (C) 2017 Elsevier Inc. All rights reserved.