화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.140, No.1, 394-400, 2018
An Organometallic Cu-20 Nanocluster: Synthesis, Characterization, Immobilization on Silica, and "Click" Chemistry
The development of atomically precise nanoclusters (APNCs) protected by organometallic ligands, such as acetylides and hydrides, is an emerging area of nanoscience. In principle, these organometallic APNCs should not require harsh pretreatment for activation toward catalysis, such as calcination, which can lead to sintering. Herein, we report the synthesis of the mixed-valent organometallic copper APNC, [Cu-20(CCPh)(12)(OAc)(6))] (1), via reduction of Cu(OAc) with Ph2SiH2 in the presence of phenylacetylene. This cluster is a rare example of a two-electron copper superatom, and the first to feature a tetrahedral [Cu-4](2+) core, which is a unique "kernel" for a Cu-only superatom. Complex 1 can be readily immobilized on dry, partially dehydroxylated silica, a process that cleanly results in release of 1 equiv of phenylacetylene per Cu-20 cluster. Cu K-edge EXAFS confirms that the immobilized cluster 2 is structurally similar to 1. In addition, both 1 and 2 are effective catalysts for [3+2] cycloaddition reactions between alkynes and azides (i.e., "Click" reactions) at room temperature. Significantly, neither cluster requires any pretreatment for activation toward catalysis. Moreover, EXAFS analysis of 2 after catalysis demonstrates that the cluster undergoes no major structural or nuclearity changes during the reaction, consistent with our observation that supported cluster 2 is more stable than unsupported cluster 1 under "Click" reaction conditions.