Langmuir, Vol.34, No.1, 540-545, 2018
Compatibility of PEGylated Polymer Nanoparticles with the Biophysical Function of Lung Surfactant
To minimize an unwanted interference of colloidal drug delivery vehicles with the biophysical functionality of lung surfactant, the surface of polymer nanoparticles was modified with poly(ethylene glycol) (PEGylation). Plain poly(lactide) nanoparticles provoked a statistically relevant decrease in the surface activity of the naturally derived lung surfactant, Alveofact. By contrast, the extent of lung surfactant inhibition induced by PEGylated polymer nanoparticles was significantly attenuated. Here, escalations of the PEG coating layer thickness (>3 nm, with a chain-to-chain distance of <= 4 nm) on the colloidal surface were capable of circumventing bioadverse effects. Accordingly, polymer nanoparticles equipped with PEG chains with a molecular weight above 2-5 kDa were compatible with the biophysical function of Alveofact. Overall, PEGylation of polymer nanoparticles presents a promising approach for the development of inhalation nanomedicines revealing negligible effects on the surface activity of the lining layer present in the deep lungs.