화학공학소재연구정보센터
Particulate Science and Technology, Vol.35, No.5, 541-546, 2017
Physical and tribological characteristics of porous NiTi SMA fabricated by powder metallurgy
This paper presents the mechanical and tribological characteristics of the NiTi shape memory alloy (SMA) fabricated by powder metallurgy. This material has prominent applications in micro-electromechanical systems, medical implants, actuator, space and aerospace industries, etc. In every field, wear characteristics plays a dominating role. In present work dry-abrasion wear behavior is determined for NiTi alloy by varying binder percentage. With increasing binder percentage from 2.5 to 15 %, density decreases from 6.5 to 5.3 g/cm3 while porosity increases from 19 % to 51 %. Increasing rotational speed and binder percentage at a constant load the wear rate increases in the NiTi alloy. Due to the presence of hard particles, NiTi exhibits a very small wear rate. The coefficient of friction is also computed for the alloys in present research work. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction were used for the investigation of surface morphology and phases in the NiTi alloy.