화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.1, 103-111, February, 2018
플라즈마-탄화수소 선택적 촉매환원공정을 이용한 질소산화물 저감 연구
Conversion of NOx by Plasma-hydrocarbon Selective Catalytic Reduction Process
E-mail:
초록
본 연구에서는 온도가 큰 폭으로 변화하는 배기가스에 대응하기 위하여 플라즈마 촉매 공정을 이용하여 넓은 온도범위(150~500 ℃)에서 질소산화물(NOx)의 전환효율을 향상시키고자 하였다. 촉매 자체의 활성이 높은 고온에서는 NOx 저감이 효과적으로 일어나므로 고온 영역에서는 플라즈마 발생을 중지한 채 운전하고, 저온영역에서는 촉매상에 플라즈마를 발생시켜 NOx 전환효율을 증가시켰다. 촉매의 종류, 반응온도, 환원제(n-헵테인)의 농도 및 에너지 밀도의 변화가 NOx 전환효율에 미치는 영향을 조사하였다. 다양한 촉매를 비교분석한 결과, 고온에서 촉매에 의한 NOx 전환효율은 Ag-Zn/γ-Al2O3 촉매의 경우가 90% 이상으로 가장 우수하였다. 저온 영역에서는 탄화수소 선택적 환원 공정에 의해 NOx가 거의 제거되지 않았으나, 플라즈마를 촉매상에서 발생시킬 경우 약 90%의 높은 NOx 전환효율을 나타내었다. 배기가스의 온도변화에 대응하여 플라즈마를 촉매상에 생성시켜 운전할 경우 150~500 ℃에서 NOx 전환효율을 높게 유지할 수 있다.
A plasma-catalytic combined process was used as an attempt to improve the conversion efficiency of nitrogen oxides (NOx) over a wide temperature range (150~500 ℃) to cope with the exhaust gas whose temperature varies greatly. Since the catalytic NOx reduction is effective at high temperatures where the activity of the catalyst itself is high, the NOx reduction was carried out without plasma generation in the high temperature region. On the other hand, in the low temperature region, the plasma was created in the catalyst bed to make up for the decreased catalytic activity, thereby increasing the NOx conversion efficiency. Effects of the types of catalysts, the reaction temperature, the concentration of the reducing agent (n-heptane), and the energy density on NOx conversion efficiency were examined. As a result of comparative analysis of various catalysts, the catalytic NOx conversion efficiency in the high temperature region was the highest in the case of the Ag-Zn/γ-Al2O3 catalyst of more than 90%. In the low temperature region, NOx was hardly removed by the hydrocarbon selective reduction process, but when the plasma was generated in the catalyst bed, the NOx conversion sharply increased to about 90%. The NOx conversion can be maintained high at temperatures of 150~500 ℃ by the combination of plasma in accordance with the temperature change of the exhaust gas.
  1. Jacobson MZ, 2nd Ed., Cambridge University Press, UK (2012).
  2. Schill L, Putluru SSR, Fehrmann R, Jensen AD, Catal. Lett., 144(3), 395 (2014)
  3. Cheng X, Bi XT, Particuology, 16, 1 (2014)
  4. Brandenberger S, Krocher O, Casapu M, Tissler A, Althoff R, Appl. Catal. B: Environ., 101(3-4), 649 (2011)
  5. Metkar PS, Harold MP, Balakotaiah V, Chem. Eng. Sci., 87, 51 (2013)
  6. Zhang K, Xu L, Niu S, Lu C, Wang D, Zhang Q, Li J, Korean J. Chem. Eng., 34(6), 1858 (2017)
  7. Xu L, Niu S, Lu C, Wang D, Zhang K, Li J, Korean J. Chem. Eng., 34(5), 1576 (2017)
  8. Guan Z, Ren J, Chen D, Hong L, Li F, Wang D, Ouyang Y, Gao Y, Korean J. Chem. Eng., 33(11), 3102 (2016)
  9. Eranen K, Lindfors LE, Klingstedt F, Murzin DY, J. Catal., 219(1), 25 (2003)
  10. Kim YJ, Kwon HJ, Heo I, Nam IS, Cho BK, Choung JW, Cha MS, Yeo GK, Appl. Catal. B: Environ., 126, 9 (2012)
  11. Yang TT, Bi HT, Cheng XX, Appl. Catal. B: Environ., 102(1-2), 163 (2011)
  12. Zhang L, Sha XL, Zhang L, He H, Ma Z, Wang L, Wang Y, She L, AIP Adv., 6, 075015 (2016)
  13. Lee TY, Bai H, AIMS Environ. Sci., 3, 261 (2016)
  14. Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B, Chem. Commun., 23, 2718 (2004)
  15. Iwasaki M, Shinjoh H, Appl. Catal. A: Gen., 390(1-2), 71 (2010)
  16. Koebel M, Madia G, Elsener M, Catal. Today, 73(3-4), 239 (2002)
  17. Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M, J. Catal., 256(2), 312 (2008)
  18. Piumetti M, Bensaid S, Fino D, Russo N, Catal. Struct. React., 1, 155 (2015)
  19. Tonkyn RG, Barlow SE, Hoard JW, Appl. Catal. B: Environ., 40(3), 207 (2003)
  20. Pan H, Guo YH, Jian YF, He C, Energy Fuels, 29(8), 5282 (2015)
  21. Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN, Environ. Sci. Technol., 43, 2216 (2009)
  22. Trinh QH, Mok YS, Korean J. Chem. Eng., 33(3), 735 (2016)
  23. Whitehead JC, J. Phys. D-Appl. Phys., 49, 243001 (2016)
  24. Stere CE, Adress W, Burch R, Chansa S, Goguet A, Graham WG, De Rosa F, Palma V, Hardacre C, ACS Catal., 4, 666 (2014)
  25. Yu Q, Liu T, Wang H, Xiao L, Chen M, Jiang X, Zheng X, Chin. J. Catal., 33, 783 (2012)
  26. Jiang N, Shang KF, Lu N, Li H, Li J, Wu Y, IEEE Trans. Plasma Sci., 44, 2738 (2016)
  27. Guan B, Lin H, Cheng Q, Huang Z, Ind. Eng. Chem. Res., 50(9), 5401 (2011)
  28. Talebizadeh P, Babaie M, Brown R, Rahimzadeh H, Ristovski Z, Arai M, Renew. Sust. Energ. Rev., 40, 886 (2014)
  29. Kim MK, Kim PS, Cho BK, Nam IS, Oh SH, Catal. Today, 184(1), 95 (2012)
  30. Hamill C, Burch R, Goguet A, Rooney D, Driss H, Petrov L, Daous M, Appl. Catal. B: Environ., 147, 864 (2014)
  31. Magureanu M, Dobrin D, Mandache NB, Cojocaru B, Parvulescu VI, Front. Chem., 1, 7 (2013)
  32. Trinh HQ, Mok YS, Chem. Eng. J., 251, 199 (2014)
  33. He H, Zhang CB, Yu YB, Catal. Today, 90(3-4), 191 (2004)
  34. Mok YS, Ravi V, Kang HC, Rajanikanth BS, IEEE Trans. Plasma Sci., 31, 157 (2003)
  35. Cho BK, Lee JH, Crellin CC, Olson KL, Hilden DL, Kim MK, Kim PS, Heo I, Oh SH, Nam IS, Catal. Today, 191(1), 20 (2012)
  36. Bao XY, Malik MA, Norton DG, Neculaes VB, Schoenbach KH, Heller R, Siclovan OP, Corah SE, Caiafa A, Inzinna LP, Conway KR, Plasma Chem. Plasma Process., 34(4), 825 (2014)
  37. Dorai R, Kushner MJ, J. Phys. D-Appl. Phys., 34, 574 (2001)
  38. Rajanikanth BS, Srinivasan AD, IEEE Trans. Dielectr. Electr. Insul., 14, 302 (2007)