Korean Journal of Chemical Engineering, Vol.35, No.3, 744-749, March, 2018
Characteristics of photocatalytic decomposition of individual and binary mixture vapors of some VOCs by a cylindrical UV reactor with helically installed TiO2-coated perforated planes
E-mail:
The photocatalytic decomposition characteristics of individual and binary vapors of benzene, toluene, and ethylbenzene by a UV reactor were studied. The reactor was custom-designed to have a synergistic effect of photochemical oxidation by ozone generated by UV254+185 nm lamps and photocatalytic oxidation by TiO2 photocatalyst whose surface area was almost doubled by helically inserted TiO2-coated perforated planes. The removal efficiencies of individual vapors of benzene, toluene, and ethylbenzene generally increased in proportion to the relative humidity and oxygen supply. The photocatalytic decomposition kinetics of individual vapors, as well as binary vapors consisting of benzene-toluene, benzene-ethylbenzene, and toluene-ethylbenzene, followed the Langmuir-Hinshelwood (L-H) equation quite well. Maximum elimination capacities of individual vapors were 560 g/m3ㆍday, 630 g/m3ㆍday, and 1,024 g/ m3ㆍday for benzene, toluene, and ethylbenzene, respectively. In view of mutual impact for the photocatalytic decomposition of binary vapors, the reaction rate of the target component was more influenced by the presence of the counter component with lower bond dissociation energy.
- Gironi F, Piemonte V, Chem. Eng. J., 172(2-3), 671 (2011)
- WHO, World Health Organization Guidelines for Drinking Water Quality, World Health Organization, Geneva, Switzerland (2004).
- Hamad A, Fayed ME, Chem. Eng. Res. Des., 82(7), 895 (2004)
- Lee SW, Cheon JK, Park HJ, Lee MG, Korean J. Chem. Eng., 25(5), 1154 (2008)
- Kim JK, Kam SK, Lee MG, Int. J. Environ. Pollut., 39, 264 (2009)
- Cho SJ, Ryoo MW, Soun KS, Lee JH, Kang SK, Korean J. Chem. Eng., 16(4), 478 (1999)
- Won YS, Jeon JW, Lee DH, Lee MG, J. Chem. Eng. Jpn., 50, 289 (2017)
- Urashima K, Chang JS, IEEE Transactions on Dielectrics and Electrical Insulation, 7, 602 (2000).
- Cha CY, Carlisle CT, J. Air Waste Manage. Assoc., 51, 1628 (2011)
- Verbruggen SW, Ribbens S, Tytgat T, Hauchecorne B, Smits M, Meynen V, Cool P, Martens JA, Lenaerts S, Chem. Eng. J., 174(1), 318 (2011)
- Jeong JY, Sekiguchi K, Lee WK, Sakamoto K, J. Photochem. Photobiol. A-Chem., 169, 279 (2005)
- Vorontsov AV, Catal. Commun., 8, 2100 (2007)
- Strini A, Cassese S, Schiavi L, Appl. Catal. B: Environ., 61(1-2), 90 (2005)
- Quici N, Vera ML, Choi H, Puma GL, Dionysiou DD, Litter MI, Destaillats H, Appl. Catal. B: Environ., 95(3-4), 312 (2010)
- Korologos CA, Philippopoulos CJ, Poulopoulos SG, Atmos. Environ., 45, 7089 (2011)
- Ku Y, Chen JS, Chen HW, J. Air Waste Manage. Assoc., 57, 279 (2007)
- Dionysiou DD, Suidan MT, Baudin I, Laine JM, Appl. Catal. B: Environ., 50(4), 259 (2004)
- Shen YS, Ku Y, Chemosphere, 46, 101 (2002)
- Pengyi Z, Fuyan L, Gang Y, Qing C, Wanpeng Z, J. Photochem. Photobiol. A-Chem., 156, 189 (2003)
- Yoa SJ, Cho YS, Kim JH, Korean J. Chem. Eng., 22(3), 364 (2005)
- Feiyan C, Pehkonen SO, Ray MB, Water Res., 36, 4203 (2002)
- Huang HB, Leung DYC, J. Environ. Eng., 137, 996 (2011)
- Bouzaza A, Vallet C, Laplanche A, J. Photochem. Photobiol. A-Chem., 177, 212 (2006)
- Peral J, Ollis DF, J. Catal., 136, 544 (1992)
- d’Hennezel O, Pichat P, Ollis DF, J. Photochem. Photobiol. A-Chem., 118, 197 (1998)
- Jung KH, Hong SC, J. Korean Ind. Eng. Chem., 14(5), 671 (2003)
- Kim SB, Hwang HT, Hong SC, Chemosphere, 48, 437 (2002)
- Shin DY, Kim KN, J. Korean Ceramic Soc., 45, 43 (2008)
- Shang J, Li W, Zhu YF, J. Mol. Catal. A-Chem., 202(1-2), 187 (2003)
- Jolly GS, Paraskevopoulos G, Singleton DL, Int. J. Chem. Kinet., 17, 1 (1985)
- Luo YR, Handbook of bond dissociation energies in organic compounds, CRC Press, 392 (2003).
- Boulamanti AK, korologos CA, Philippopoulos CJ, Atmos. Environ., 42, 7844 (2008)
- Wang W, Chiang LW, Ku Y, J. Hazard. Mater., 101(2), 133 (2003)
- Zhang YP, Yang R, Xu QJ, Mo JH, J. Air Waste Manage. Assoc., 57, 94 (2007)