- Previous Article
- Next Article
- Table of Contents
Korea-Australia Rheology Journal, Vol.30, No.1, 1-10, February, 2018
First-harmonic nonlinearities can predict unseen third-harmonics in medium-amplitude oscillatory shear (MAOS)
E-mail:
We use first-harmonic MAOS nonlinearities from G'1 and G"1 to test a predictive structure-rheology modelfor a transient polymer network. Using experiments with PVA-Borax (polyvinyl alcohol cross-linked by sodium tetraborate (borax)) at 11 different compositions, the model is calibrated to first-harmonic MAOS data on a torque-controlled rheometer at a fixed frequency, and used to predict third-harmonic MAOS on a displacement controlled rheometer at a different frequency three times larger. The prediction matches experiments for decomposed MAOS measures [e3] and [v3] with median disagreement of 13% and 25%, respectively, across all 11 compositions tested. This supports the validity of this model, and demonstrates the value of using all four MAOS signatures to understand and test structure-rheology relations for complex fluids.
Keywords:large-amplitude oscillatory shear;LAOS;MAOS;supramolecular;polymer network;constitutive model testing;prediction;experimental methods;parameter calibration
- Bharadwaj NA, Ewoldt RH, J. Rheol., 59(2), 557 (2015)
- Bharadwaj NA, Schweizer KS, Ewoldt RH, J. Rheol., 61(4), 643 (2017)
- Chen CY, Yu TL, Polymer, 38(9), 2019 (1997)
- Davis WM, Macosko CW, J. Rheol., 22, 53 (1978)
- Ewoldt RH, J. Rheol., 57(1), 177 (2013)
- Ewoldt RH, Hosoi AE, McKinley GH, J. Rheol., 52(6), 1427 (2008)
- Ewoldt RH, Bharadwaj NA, Rheol. Acta, 52(3), 201 (2013)
- Ewoldt RH, Johnston MT, Caretta LM, Complex Fluids in Biological Systems, Springer, New York, 207-241 2015.
- Gurnon AK, Wagner NJ, J. Rheol., 56(2), 333 (2012)
- Huang G, Zhang HH, Liu YL, Chang HJ, Zhang HW, Song HZ, Xu DH, Shi TF, Macromolecules, 50(5), 2124 (2017)
- Hyun K, Baik ES, Ahn KH, Lee SJ, Sugimoto M, Koyama K, J. Rheol., 51(6), 1319 (2007)
- Hyun K, Wilhelm M, Macromolecules, 2, 411 (2009)
- Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH, Prog. Polym. Sci, 36, 1697 (2011)
- INOUE T, OSAKI K, Rheol. Acta, 32(6), 550 (1993)
- Keita G, Ricard A, Audebert R, Pezron E, Leibler L, Polymer, 36(1), 49 (1995)
- Kirkwood JG, Plock RJ, J. Chem. Phys., 24, 665 (1956)
- Koike A, Nemoto N, Inoue T, Osaki K, Macromolecules, 28(7), 2339 (1995)
- Kurokawa H, Shibayama M, Ishimaru T, Nomura S, Wu WL, Polymer, 33, 2182 (1992)
- Lin HL, Liu YF, Yu TL, Liu WH, Rwei SP, Polymer, 46(15), 5541 (2005)
- Macosko CW, Rheology: Principles, Measurements, and Applications, Wiley-VCH, New York 1994.
- Merger D, Wilhelm M, Rheol. Acta, 53(8), 621 (2014)
- Nemoto N, Koike A, Osaki K, Macromolecules, 29(5), 1445 (1996)
- Onogi S, Masuda T, Matsumoto T, J. Rheol., 14, 275 (1970)
- Paul E, J. Chem. Phys., 51, 1271 (1969)
- Rogers SA, J. Rheol., 56(5), 1129 (2012)
- Rogers SA, Rheol. Acta, 56(5), 501 (2017)
- Saengow C, Giacomin AJ, Kolitawong C, Phys. Fluids, 29, 043101 (2017)
- Wagner MH, Rolon-Garrido VH, Hyun K, Wilhelm M, J. Rheol., 55(3), 495 (2011)
- Wang SQ, Ravindranath S, Boukany PE, Macromolecules, 44(2), 183 (2011)
- Wilhelm M, Macromol. Mater. Eng., 287, 83 (2002)