화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.30, No.1, 1-10, February, 2018
First-harmonic nonlinearities can predict unseen third-harmonics in medium-amplitude oscillatory shear (MAOS)
E-mail:
We use first-harmonic MAOS nonlinearities from G'1 and G"1 to test a predictive structure-rheology modelfor a transient polymer network. Using experiments with PVA-Borax (polyvinyl alcohol cross-linked by sodium tetraborate (borax)) at 11 different compositions, the model is calibrated to first-harmonic MAOS data on a torque-controlled rheometer at a fixed frequency, and used to predict third-harmonic MAOS on a displacement controlled rheometer at a different frequency three times larger. The prediction matches experiments for decomposed MAOS measures [e3] and [v3] with median disagreement of 13% and 25%, respectively, across all 11 compositions tested. This supports the validity of this model, and demonstrates the value of using all four MAOS signatures to understand and test structure-rheology relations for complex fluids.
  1. Bharadwaj NA, Ewoldt RH, J. Rheol., 59(2), 557 (2015)
  2. Bharadwaj NA, Schweizer KS, Ewoldt RH, J. Rheol., 61(4), 643 (2017)
  3. Chen CY, Yu TL, Polymer, 38(9), 2019 (1997)
  4. Davis WM, Macosko CW, J. Rheol., 22, 53 (1978)
  5. Ewoldt RH, J. Rheol., 57(1), 177 (2013)
  6. Ewoldt RH, Hosoi AE, McKinley GH, J. Rheol., 52(6), 1427 (2008)
  7. Ewoldt RH, Bharadwaj NA, Rheol. Acta, 52(3), 201 (2013)
  8. Ewoldt RH, Johnston MT, Caretta LM, Complex Fluids in Biological Systems, Springer, New York, 207-241 2015.
  9. Gurnon AK, Wagner NJ, J. Rheol., 56(2), 333 (2012)
  10. Huang G, Zhang HH, Liu YL, Chang HJ, Zhang HW, Song HZ, Xu DH, Shi TF, Macromolecules, 50(5), 2124 (2017)
  11. Hyun K, Baik ES, Ahn KH, Lee SJ, Sugimoto M, Koyama K, J. Rheol., 51(6), 1319 (2007)
  12. Hyun K, Wilhelm M, Macromolecules, 2, 411 (2009)
  13. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH, Prog. Polym. Sci, 36, 1697 (2011)
  14. INOUE T, OSAKI K, Rheol. Acta, 32(6), 550 (1993)
  15. Keita G, Ricard A, Audebert R, Pezron E, Leibler L, Polymer, 36(1), 49 (1995)
  16. Kirkwood JG, Plock RJ, J. Chem. Phys., 24, 665 (1956)
  17. Koike A, Nemoto N, Inoue T, Osaki K, Macromolecules, 28(7), 2339 (1995)
  18. Kurokawa H, Shibayama M, Ishimaru T, Nomura S, Wu WL, Polymer, 33, 2182 (1992)
  19. Lin HL, Liu YF, Yu TL, Liu WH, Rwei SP, Polymer, 46(15), 5541 (2005)
  20. Macosko CW, Rheology: Principles, Measurements, and Applications, Wiley-VCH, New York 1994.
  21. Merger D, Wilhelm M, Rheol. Acta, 53(8), 621 (2014)
  22. Nemoto N, Koike A, Osaki K, Macromolecules, 29(5), 1445 (1996)
  23. Onogi S, Masuda T, Matsumoto T, J. Rheol., 14, 275 (1970)
  24. Paul E, J. Chem. Phys., 51, 1271 (1969)
  25. Rogers SA, J. Rheol., 56(5), 1129 (2012)
  26. Rogers SA, Rheol. Acta, 56(5), 501 (2017)
  27. Saengow C, Giacomin AJ, Kolitawong C, Phys. Fluids, 29, 043101 (2017)
  28. Wagner MH, Rolon-Garrido VH, Hyun K, Wilhelm M, J. Rheol., 55(3), 495 (2011)
  29. Wang SQ, Ravindranath S, Boukany PE, Macromolecules, 44(2), 183 (2011)
  30. Wilhelm M, Macromol. Mater. Eng., 287, 83 (2002)