화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.60, 451-457, April, 2018
Carbon embedded SnSb composite tailored by carbothermal reduction process as high performance anode for sodium-ion batteries
E-mail:
We report a facile and mass-producible carbothermal reduction process to synthesize a SnSb/C composite with enhanced conductivity through the small grains by restricting their size and aggregation. As-synthesized SnSb material consists of crystalline SnSb without residual oxide, and appears as a homogeneously distributed phase with carbon by XRD and TEM analysis. SnSb/C anode for Na-ion batteries exhibits outstanding electrochemical performances, showing a sodiation/desodiation capacity of 650/490 mAh-g-1, 265 mAh-g-1 at 4C rate, and 70% of capacity retention at 0.2C (100 mA g-1) over 200 cycles. SEM images of the after-cycled electrode does not show a significantly different morphology from the fresh electrode, indicating that the as-prepared SnSb electrode is free of pulverization caused by repeated sodiation/desodiation reactions. The electrochemical reaction mechanism of SnSb/C anode is suggested by ex-situ XRD measurements and high-resolution TEM analysis of fully sodiated and desodiated electrodes.
  1. Armand M, Tarascon JM, Nature, 451, 652 (2008)
  2. Scrosati B, Garche J, J. Power Sources, 9, 2419 (2010)
  3. Tarascon JM, Armand M, Nature, 414, 359 (2001)
  4. Bruce PG, Scrosati B, Tarascon JM, Angew. Chem.-Int. Edit., 47, 2930 (2008)
  5. Park CM, Kim JH, Kim H, Sohn HJ, Chem. Soc. Rev., 39, 3115 (2010)
  6. Dunn B, Kamath H, Tarascon JM, Science, 334(6058), 928 (2011)
  7. Hong SY, Kim Y, Park Y, Choi AA, Choi NS, Lee KT, Environ. Sci., 6, 2067 (2013)
  8. Herrera CPH, Perrin M, Grosjean PP, Renew. Sust. Energ. Rev., 16, 1735 (2012)
  9. Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S, Nat. Mater., 11(6), 512 (2012)
  10. Luo C, Zhu YJ, Xu YH, Liu YH, Gao T, Wang J, Wang CS, J. Power Sources, 250, 372 (2014)
  11. Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S, Phys. Chem. Chem. Phys., 14, 15007 (2014)
  12. Braconnier JJ, Delmas C, Fouassier C, Hagenmuller P, Mater. Res. Bull., 15, 1797 (1980)
  13. Komaba S, Takei C, Nakayama T, Ogata A, Yabuuchi N, Electrochem. Commun., 12, 355 (2010)
  14. Lee KT, Ramesh TN, Nan F, Botton G, Nazar LF, Chem. Mater., 23, 3593 (2011)
  15. Park YU, Seo DH, Kwon HS, Kim B, Kim J, Kim H, Kim I, Yoo HI, Kang K, J. Am. Chem. Soc., 135, 13870 (2013)
  16. Wang L, Song R, Wray LA, Hossain MA, Chuang YD, Yang W, Lu Y, Evans D, Lee JJ, Vail S, Zhao X, Nishijima M, Kakimoto S, Goodenough JB, J. Am. Ceram. Soc., 137, 2548 (2015)
  17. Song J, Wang L, Lu YH, Liu J, Guo BK, Xiao PH, Lee JJ, Yang XQ, Henkelman G, Goodenough JB, J. Am. Chem. Soc., 137(7), 2658 (2015)
  18. Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J, Nano Lett., 2, 3783 (2012)
  19. Zhao J, Zhao LW, Chihara K, Okada S, Yamaki J, Matsumoto S, Kuze S, Nakane K, J. Power Sources, 244, 752 (2013)
  20. Bai Y, Wang Y, Wu C, Xu R, Wu F, Liu Y, Li H, Li Y, Lu J, Amine K, ACS Appl. Mater. Interfaces, 7, 5598 (2015)
  21. Ponrouch A, Goni AR, Palacin MR, Electrochem. Commun., 27, 85 (2013)
  22. Pan H, Hu YS, Chen L, Energy Environ. Sci., 6, 2338 (2013)
  23. Stevens DA, Dahn JR, J. Electrochem. Soc., 147(4), 1271 (2000)
  24. Kang H, Liu Y, Cao K, Zho Y, Jiao L, Wang T, Yuan G, J. Mater. Chem. A, 3, 17899 (2015)
  25. Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S, Electrochem. Commun., 21, 65 (2015)
  26. Datta MK, Epur R, Saha P, Kadakia K, Park SK, Kuma PN, J. Power Sources, 225, 316 (2013)
  27. Qian JF, Chen Y, Wu L, Cao YL, Ai XP, Yang HX, Chem. Commun., 48, 7070 (2012)
  28. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L, J. Am. Chem. Soc., 134(51), 20805 (2012)
  29. Luo C, Xu Y, Zhu Y, Liu Y, Zheng S, Liu Y, Langrock A, Wang C, ASC Nano, 7, 8003 (2013)
  30. Qian J, Wu X, Cao Y, Ai X, Yang H, Angew. Chem.-Int. Edit., 52, 4633 (2013)
  31. Xiao L, Cao T, Xiao J, Wang W, Kovarik L, Nie Z, Liu J, Chem. Commun., 48, 3321 (2012)
  32. Darwhiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L, Electrochem. Commun., 32, 18 (2013)
  33. Wang J, Luo C, Mao J, Zhu Y, Fan X, Gao T, Mignerey AC, Wang C, ACS Appl. Mater. Interfaces, 7, 11476 (2015)
  34. Yu DYW, Prikhodchenko PV, Mason CW, Batabyal SK, Gun J, Sladkevich S, Medvedv AG, Lev O, Nat. Commun., 4, 2922 (2013)
  35. Zhu Y, Nie P, Shen L, Dong S, Sheng Q, Li H, Luo H, Zhang X, Nanoscale, 7, 3309 (2015)
  36. Kim IT, Kim SO, Manthiram A, J. Power Sources, 269, 848 (2014)
  37. Ji L, Zhou W, Chabot V, Yu A, Xia X, ACS Appl. Mater. Interfaces, 7, 24895 (2015)
  38. Jung WG, J. Ind. Eng. Chem., 29, 408 (2015)
  39. Kim SJ, Yun SM, Lee YS, J. Ind. Eng. Chem., 29, 273 (2015)
  40. Seo J, Park C, J. Mater. Chem. A, 1, 15316 (2013)
  41. Li W, Zhou M, Li G, Wang K, Cheng S, Jiang K, Electrochem. Commun., 60, 74 (2015)
  42. Zhang YD, Xie J, Zhu TJ, Cao GS, Zhao XB, Zhang SC, J. Power Sources, 247, 204 (2014)
  43. Park CM, Sohn HJ, Electrochim. Acta, 26, 6367 (2009)
  44. Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT, Adv. Mater., 26(24), 4139 (2014)