화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.60, 475-484, April, 2018
Preparation and characterization of ion selective membrane and its application for Cu2+ removal
E-mail:
Membranes are used in industrial wastewater treatment for the removal and recovery of heavy metals. A persistent challenge in heavy metals removal using membranes is the lack of selectivity for specific target ions, such as the removal and recovery of copper from other metal ions in industrial wastewater. This work reports the preparation of a new Cu(II)-selective ion-imprinted polymeric membrane. Membrane synthesis was conducted by applying an advanced immobilization method which comprises the preparation of polymerizable chelating monomer divinylbenzyl triethylenetetramine (diVB-TETA), the formation of the copper complex Cu-divinylbenzyl triethylenetetramine monomer (diVB-TETA-Cu), the polymerization/cross-linking of diVB-TETA-Cu within the Polyvinylidene fluoride (PVDF) pores to produce a copper-loaded membrane and finally the leaching of the copper (imprinting) from the membrane to produce ion-imprinted PVDF/diVB-TETA-Cu membrane. The chemical, elemental morphological properties of the synthesized ion-imprinted membrane were characterized by Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscope coupled with Energy dispersive X-ray spectroscopy (SEM-EDS), Proton nuclear magnetic resonance (1H NMR) and Carbon-13 nuclear magnetic resonance (13C NMR). To assess selective separation of Cu2+ from the mixture of Cu2+ and Ni2+, adsorption at different pH settings and diffusion permeation experiments were carried out. The results show that diVB-TETA-Cu was successfully synthesized and its immobilization through polymerization/ cross-linking almost filled all PVDF pores. The PVDF/diVB-TETA-Cu membrane permeation flux ratio of Cu2+:Ni2+ is 3.78. The prepared membrane is suitable for Cu2+ ion selective separation processes.
  1. Koseoglu TS, Kir E, Ozkorucuklu SP, Karamizrak E, React. Funct. Polym., 70(11), 900 (2010)
  2. Khan MMA, Rafiuddin, Inamuddin, J. Ind. Eng. Chem., 19(1), 120 (2013)
  3. Tang YP, Luo L, Thong ZW, Chung TS, J. Membr. Sci., 541, 434 (2017)
  4. Mohajeri M, Akbarpour H, Karimkhani V, Mater. Today Proc., 4, 4906 (2017)
  5. Le NL, Nunes SP, SUSMAT, 7, 1 (2016)
  6. Gohil GS, Binsu VV, Shahi VK, J. Membr. Sci., 280(1-2), 210 (2006)
  7. Ata N, Yazicigil Z, Oztekin Y, J. Hazard. Mater., 160(1), 154 (2008)
  8. Hosseini SM, Madaeni SS, Khodabakhshi AR, Sep. Sci. Technol., 45(16), 2308 (2010)
  9. Fu F, Wang Q, J. Environ. Manage., 92, 407 (2011)
  10. Wang D, Hu JG, Liu DB, Chen QY, Li J, J. Membr. Sci., 524, 205 (2017)
  11. Judd SJ, Water Res., 122, 1 (2017)
  12. Lambert J, Avila-Rodriguez M, Durand G, Rakib M, J. Membr. Sci., 280(1-2), 219 (2006)
  13. Gopal V, April GC, Schrodt VN, Sep. Purif. Technol., 14(1-3), 85 (1998)
  14. Chakrabarty T, Shah B, Srivastava N, Shahi VK, Chudasama U, J. Membr. Sci., 428, 462 (2013)
  15. Chaudhury S, Bhattacharyya A, Ansari SA, Goswami A, J. Membr. Sci., 545, 75 (2018)
  16. Nabi SA, Shahadat M, Bushra R, Shalla AH, Chem. Eng. J., 175, 8 (2011)
  17. Christensen ER, Delwiche JT, Water Res., 16, 729 (1982)
  18. Bessbousse H, Verchere JF, Lebrun L, Chem. Eng. J., 187, 16 (2012)
  19. Abu Qdais H, Moussa H, Desalination, 164(2), 105 (2004)
  20. Ulbricht M, J. Chromatogr. B, 804, 113 (2004)
  21. Singh A, Puranik D, Guo Y, Chang EL, React. Funct. Polym., 44, 79 (2000)
  22. Sun DS, Zhu YZ, Meng MJ, Qiao Y, Yan YS, Li CX, Sep. Purif. Technol., 175, 19 (2017)
  23. Tamahkar E, Bakhshpour M, Andac M, Denizli A, Sep. Purif. Technol., 179, 36 (2017)
  24. Liu EL, Xu XC, Zheng XD, Zhang FS, Liu EX, Li CX, Sep. Purif. Technol., 189, 288 (2017)
  25. Ghanei-Motlagh M, Taher MA, Chem. Eng. J., 327, 135 (2017)
  26. He JN, Shang HZ, Zhang X, Sun XR, Appl. Surf. Sci., 428, 110 (2018)
  27. Sun J, Wu L, Li Y, J. Taiwan Inst. Chem. Eng., 78, 219 (2017)
  28. Baghel A, Boopathi M, Singh B, Pandey P, Mahato TH, Gutch PK, et al., Biosens. Bioelectron., 22, 3326 (2007)
  29. Branger C, Meouche W, Margaillan A, React. Funct. Polym., 73(6), 859 (2013)
  30. Piletsky SA, Panasyuk TL, Piletskaya EV, Nicholls IA, Ulbricht M, J. Membr. Sci., 157(2), 263 (1999)
  31. Zhou ZY, Kong DL, Zhu HY, Wang NA, Wang Z, Wang Q, Liu W, Li QS, Zhang WD, Ren ZQ, J. Hazard. Mater., 341, 355 (2018)
  32. Dahaghin Z, Mousavi HZ, Sajjadi SM, Food Chem., 237, 275 (2017)
  33. Zhai YH, Liu YW, Chang XJ, Ruan XF, Liu JL, React. Funct. Polym., 68(1), 284 (2008)
  34. Zheng XM, Fan RY, Zhao JY, Sep. Sci. Technol., 47(10), 1571 (2012)
  35. Deng HN, Zhao SJ, Meng QQ, Zhang W, Hu BS, Ind. Eng. Chem. Res., 53(39), 15230 (2014)
  36. Deng HN, Gao LY, Zhang SF, Yuan JS, Ind. Eng. Chem. Res., 51(43), 14018 (2012)
  37. Irving H, Williams RJP, J. Chem. Soc., 3192 (1953).
  38. Jiang W, Preparation and Characterization of Pore-filled Cation-exchange Membranes, McMaster, 1999.
  39. Jiang W, Childs RF, Mika AM, Dickson JM, Desalination, 159(3), 253 (2003)
  40. Mika AM, Childs RF, Dickson JM, Mccarry BE, Gagnon DR, J. Membr. Sci., 135(1), 81 (1997)
  41. Kwak NS, Koo JS, Hwang TS, Choi EM, Desalination, 285, 138 (2012)
  42. Strathmann H, Ion-exchange Membrane Separation Processes, Elsevier, Germany, 2004.
  43. Strathmann H, Introduction to Membrane Science and Technology, Wiley-VCH, Germany, 2011.
  44. Xiong CH, Chen XY, Liu XZ, Chem. Eng. J., 203, 115 (2012)
  45. Liu J, Ma Y, Xu T, Shao G, J. Hazard. Mater., 1748, 1021 (2010)
  46. Sherringtonb DC, J. Chem. Soc. Chem. Commun., 147 (1995).
  47. Vatanpour V, Madaeni SS, Zinadini S, Rajabi HR, J. Membr. Sci., 373(1-2), 36 (2011)
  48. Nonaka T, Takeda S, J. Membr. Sci., 121(2), 137 (1996)