Journal of Industrial and Engineering Chemistry, Vol.60, 493-497, April, 2018
Thermally oxidized porous NiO as an efficient oxygen evolution reaction (OER) electrocatalyst for electrochemical water splitting application
E-mail:
Low-cost and competent electrocatalysts play a key role in an electrocatalytic water oxidation reaction. Herein, we report that readily available bare nickel foam (NF) can be used as conductive substrate and precursor to grow a porous nickel oxide (NiO) using a simple and scalable thermal oxidation method. The obtained NiO supported on NF is used as binder-free electrocatalyst for the oxygen evolution reaction (OER) and its electrochemical properties are evaluated by linear sweep voltammetry (LSV) in 1 M KOH. The porous NiO thin film acts as an efficient electrocatalyst for the OER and achieves a catalytic current density of 10 mA cm-2 at an overpotential of 310 mV with a smaller Tafel slope of 54 mV dec-1. The electrode also shows good durability over 24 h with negligible degradation. This durable and highperformance electrocatalyst can be a competitor to electrocatalysts that consist of costly elements and, require advanced synthesis; the NiO electrocatalyst shows progress towards the replacement of noble metal-based electrocatalysts for the OER.
Keywords:Nickel oxide electrocatalyst;Oxidation method;Linear sweep voltammetry (LSV);X-ray photoelectron spectroscopy (XPS)
- Tahir M, Pan L, Idrees F, Zhang X, Wang L, Zou J, Wang ZL, Nano Energy, 37, 136 (2017)
- Cui Z, Ge Y, Chu H, Baines R, Dong P, Tang J, Yang Y, Ajayan PM, Ye M, Shen J, J. Mater. Chem. A, 5, 1595 (2017)
- She ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, Jaramillo TF, Science, 355, 6321 (2017)
- Shi Y, Zhang B, Chem. Soc. Rev., 45, 1529 (2016)
- Duan HH, Li DG, Tang Y, He Y, Ji SF, Wang RY, Lv HF, Lopes PP, Paulikas AP, Li HY, Mao SX, Wang CM, Markovic NM, Li J, Stamenkovic VR, Li YD, J. Am. Chem. Soc., 139(15), 5494 (2017)
- Ai LH, Niu ZG, Jiang J, Electrochim. Acta, 242, 355 (2017)
- Suen N, Hung S, Quan Q, Zhang N, Xu Y, Chen HM, Chem. Soc. Rev., 46, 337 (2017)
- Jiang J, Liu Q, Zeng C, Ai L, J. Mater. Chem. A, 5, 16929 (2017)
- Babar PT, Pawar BS, Lokhande AC, Gang MG, Jang JS, Suryawanshi MP, Pawar SM, Kim JH, J. Energy Chem., 26, 757 (2017)
- Pawar SM, Pawar BS, Hou B, Kim J, Ahmed A, Chavan HS, Jo Y, Cho S, Inamdar AI, Gunjakar JL, Kim HK, Cha S, Im H, J. Mater. Chem. A, 5, 12747 (2017)
- Babar PT, Lokhande AC, Pawar BS, Gang MG, Jo E, Go C, Suryawanshi MP, Pawar SM, Kim JH, Appl. Surf. Sci., 427, 253 (2018)
- Osgood H, Devaguptapu SV, Xu H, Cho J, Wu G, Nano Today, 11(5), 601 (2016)
- Lee H, Lee H, Lim B, J. Ind. Eng. Chem. (2017), doi:http://dx.doi.org/10.1016/j.jiec.2017.09.013.
- Zhuang L, Ge L, Yang Y, Li M, Jia Y, Yao X, Zhu Z, Adv. Mater., 29, 160679 (2017)
- Hwang GJ, Gil BM, Ryu CH, J. Ind. Eng. Chem., 48, 242 (2017)
- Tian T, Huang L, Ai L, Jiang J, J. Mater. Chem. A, 5, 20985 (2017)
- Yan Y, Xia BY, Zhao B, Wang X, J. Mater. Chem. A, 4, 17587 (2016)
- Li W, Gao XF, Wang XG, Xiong DH, Huang PP, Song WG, Bao XQ, Liu LF, J. Power Sources, 330, 156 (2016)
- Zhang C, Xiao J, Lv X, Qian L, Wang SYS, Lei P, J. Mater. Chem. A, 4, 16516 (2016)
- Thoi V, Sun Y, Long J, Chang C, Chem. Soc. Rev., 42, 2388 (2013)
- Li X, Hao X, Abudula A, Guan G, J. Mater. Chem. A, 4, 11973 (2016)
- George G, Anandhan S, RSC Adv., 4, 62009 (2014)
- Li J, Luo F, Zhao Q, Li Z, Yuan H, Xiao D, J. Mater. Chem. A, 2, 4690 (2014)
- Ai L, Tian T, Jiang J, ACS Sustain. Chem. Eng., 5(6), 4771 (2017)
- Zhou M, Weng Q, Zhang X, Wang X, Xue Y, Zeng X, Bando Y, Golberg D, J. Mater. Chem. A, 5, 4335 (2017)
- Pawar SM, Pawar BS, Inamdar AI, Kim J, Jo Y, Cho S, Mali SS, Hong CK, Kwak J, Kim H, Im H, Mater. Lett., 187, 60 (2017)
- Kannan V, Inamdar AI, Pawar SM, Kim HS, Park HC, Kim H, Im H, Chae YS, ACS Appl. Mater. Interfaces, 8(27), 17220 (2016)