화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.2, 215-222, March, 2018
나노기포 적용 수발포 경질 폴리우레탄 폼의 물성 연구
Effect of Nano-bubble Application on the Properties of Water Blown Rigid Polyurethane Foam
E-mail:
초록
본 연구에서는 우레탄 발포 공정 내 수발포 공법 및 나노기포 기술의 융합연구를 수행하였다. 폴리올은 amine base polyol과 sucrose polyol을 혼합해 제조하였으며, 나노기포 제조장치를 통해 폴리올 내에 나노기포를 생성하였다. 폴리우레탄 폼 제조 시 일반 폴리올과 CO2 나노기포 폴리올의 함량을 달리하여 나노기포가 발포체의 물성에 미치는 영향을 연구하였다. 나노기포의 생성 효율 향상을 위해 회전식 점도계를 이용해 점도분석을 진행하였으며, 생성된 나노기포의 확인을 위해 나노입자 추적 분석(nanoparticle tracking analysis, NTA)를 분석하였다. 제조된 폴리 우레탄 폼의 물성평가를 위해 SEM, 밀도, 열전도도, 압축 및 굴곡강도 분석을 진행하였다. 나노기포는 약 150 nm 크기의 기포가 1 mL당 약 3.08×10 10개 생성된 것을 확인하였으며, 나노기포의 함량이 증가됨에 따라 셀 균일도 및 평균 셀 크기가 감소되는 경향을 보였다. CO2 나노기포 폴리올 적용 시, 일반 폴리올 대비 열전도도 18.8%, 굴곡강도 50%가 감소되었으며 압축강도가 16.1% 증가하는 것을 확인하였다.
In this study, we investigated the relationship between nano-bubbles and rigid polyurethane foams (r-PUF). Two series of polyol and CO2 nano-bubble applied polyol were prepared with two types of blowing agents to synthesize r-PUF. Visco-analyser and nano-particle tracking analysis (NTA) were employed to determine the optimal formation point of nano-bubble. Also, scanning electron microscope (SEM), ultimate tensile strength machine (UTM), electronic scale and portable calorimeter analysis were performed for the overall property evaluation of nano-bubble applied r-PUF. Nano-bubbles were found to have approximately 150 nm size by 3.08×10 10/1 mL ratio. A comparison in the CO2 nanobubble applied and general polyol applied r-PUF revealed that the former had 18.8% increased thermal conductivity, 50% decreased flexural strength and 16.1% increased compressed strength. Aforementioned results indicate that the average cell size and distribution uniformity decreases while the total amount of nano-bubble increases.
  1. Tang Z, Maroto-Valer MM, Andresen JM, Miller JW, Listemann ML, McDaniel PL, Morita DK, Furlan WR, Polymer, 43(24), 6471 (2002)
  2. Koh SH, Kim SB, Appl. Chem., 7(1), 29 (2003)
  3. Rogge TM, Stevens CV, Vandamme A, Booten K, Levecke B, D'hooge C, Haelterman B, Corthouts J, Biomacromolecules, 6(4), 1992 (2005)
  4. Lim H, Kim EY, Kim BK, Plast. Rubber Compos., 39, 364 (2010)
  5. Takahashi M, Chiba K, Li P, J. Phys. Chem. B, 111(6), 1343 (2007)
  6. Park J, Kurata K, HortTechnology, 19, 212 (2009)
  7. Sung G, Sung J, Lee MH, J. Korean Soc. Visual., 14, 40 (2016)
  8. Agarwal A, Ng WJ, Liu Y, Chemosphere, 84, 1175 (2011)
  9. Saw EN, Grasmik V, Rurainsky C, Epple M, Tschulik K, Faraday Discuss., 193, 327 (2016)
  10. Takahashi M, Kawamura T, Yamamoto Y, Ohnari H, Himuro S, Shakutsui H, J. Phys. Chem. B, 107(10), 2171 (2003)
  11. Oh SH, Kim JM, Langmuir, 33(15), 3818 (2017)
  12. Ohgaki K, Khanh NQ, Joden Y, Tsuji A, Nakagawa T, Chem. Eng. Sci., 65(3), 1296 (2010)
  13. Ushikubo FY, Furukawa T, Nakagawa R, Enari M, Makino Y, Kawagoe Y, Oshita S, Colloids Surf. A: Physicochem. Eng. Asp., 361, 31 (2010)
  14. Weijs JH, Seddon JR, Lohse D, Chem. Phys. Chem., 13, 2197 (2012)
  15. Hwang MS, Oh SH, Lee JI, Han JW, Kim JM, Korean J. Plant. Res., 29, 574 (2016)
  16. Nagayama G, Tsuruta T, Cheng P, Int. J. Heat Mass Transf., 49(23-24), 4437 (2006)
  17. Seo WJ, Jung HC, Hyun JC, Kim WN, Lee YB, Choe KH, Kim SB, J. Appl. Polym. Sci., 90(1), 12 (2003)
  18. Park KK, Lee SH, Polym. Korea, 38(4), 441 (2014)
  19. Zhang H, Fang WZ, Li YM, Tao WQ, Appl. Therm. Eng., 115, 528 (2017)