화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.2, 261-266, March, 2018
Ti(dibenzoylmethane)2(O-i-Pr)2 합성과 L-락티드 개환중합
Synthesis of Ti(dibenzoylmethane)2(O-i-Pr)2 and its L-Lactide Ring-Opening Polymerization
E-mail:
초록
Poly(L-lactide)(PLA) 중합용 신규 촉매를 개발하기 위하여 Ti(O-i-Pr)4와 dibenzoylmethane(dbm)을 이용,Ti(dbm)2(O-i-Pr)2 촉매를 합성하였고 PLA 중합특성을 확인하였다. Ti(dbm)2(O-i-Pr)2 촉매 PLA 중합 특성은 L-락티드/촉매 몰비 및 중합시간을 변화시키며 관찰하였다. L-락티드/촉매 몰비가 증가함에 따라 전환율과 분자량이 증가 하였다. Ti(dbm)2(O-i-Pr)2 촉매는 촉매 내 페닐기가 존재하여 중합 반응 중 락티드 삽입을 방해하기 때문에 촉매 활성이 낮은 것으로 판단된다. Benzyl alcohol을 개시제로 사용하여 중합한 결과 Ti(dbm)2(O-i-Pr)2 촉매 전환율이 대폭 감소하였다. 얻어진 중합물은 DSC, GPC를 이용하여 녹는점과 분자량을 측정하였고 1H NMR로 PLA의 분자구조를 확인하였다.
Ti(dbm)2(O-i-Pr)2 catalyst was synthesized using Ti(O-i-Pr)4 and dibenzoylmethane(dbm) to develop a catalyst for the polymerization of L-lactide. The L-lactide polymerization behaviors of Ti(dbm)2(O-i-Pr)2 catalyst was observed with varying molar ratio of L-lactide/catalyst and polymerization time. The conversion and molecular weight increased with increasing L-lactide/catalyst molar ratio. Ti(dbm)2(O-i-Pr)2 catalyst was found to have a low catalytic activity because of the presence of a phenyl group in the catalyst and interfering with the lactide insertion during the polymerization reaction. Benzyl alcohol as an initiator resulted in a significant reduction in conversion of Ti(dbm)2(O-i-Pr)2 catalyst. The molecular weight of the obtained polymer was measured by DSC and GPC, and the molecular structure of PLA was confirmed by 1H NMR.
  1. Tschan MJL, Brule E, Haquette P, Thomas CM, Polym. Chem., 3, 836 (2012)
  2. Tsuji H, Echizen Y, Nishimura Y, Polym. Degrad. Stabil., 91, 1128 (2006)
  3. Kim WJ, Kim JH, Kim SH, Kim YH, Polym. Korea, 24(3), 431 (2000)
  4. Yoo JY, Kim DH, Ko YS, Polym. Korea, 36(5), 593 (2012)
  5. Yoo JY, Ko YS, Polym. Korea, 36(6), 693 (2012)
  6. Yim JH, Kim DH, Ko YS, Polym. Korea, 37(5), 606 (2013)
  7. Yim JH, Kim DH, Ko YS, Polym. Korea, 39(3), 365 (2015)
  8. Yim JH, Ko YS, Polym. Korea, 37(5), 600 (2013)
  9. Kim DH, Yoo JY, Ko YS, J. Nanosci. Nanotechnol., 16, 4539 (2016)
  10. Yim JH, Jung HY, Ko YS, Polym. Korea, 42(2), 242 (2018)
  11. Gendler S, Segal S, Goldberg I, Coldschmidt Z, Kol M, Ionrg. Chem., 45, 4783 (2006)
  12. Zelikoff AL, Kopilov J, Goldberg I, Coates GW, Kol M, Chem. Comm., 6804 (2009).
  13. Kim YJ, Verkade JG, Macromol. Rapid Commun., 23(15), 917 (2002)
  14. Kim Y, Jnaneshwara GK, Verkade JG, Inorg. Chem., 42, 1437 (2003)
  15. Umare PS, Tembe GL, Rao KV, Satpathy US, Trivedi B, J. Mol. Catal. A-Chem., 268(1-2), 235 (2007)
  16. Sergeeva E, Kopilov J, Goldberg I, Kol M, Inorg. Chem., 49, 3977 (2010)
  17. Buffet JC, martin AN, Kol M, Okuda J, Polym. Chem., 2, 2378 (2011)
  18. Deivasagayam D, Peruch F, Polymer, 52(21), 4686 (2011)
  19. Fokendt MM, Lopez BEW, Cbauvel JP, True NS, J. Phys. Chem., 89, 3347 (1985)