화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.4, 835-846, April, 2018
Optimization design research of air flow distribution in vertical radial flow adsorbers
E-mail:
Non-uniform flow distribution usually exists in a vertical radial flow adsorber, which significantly decreases the utilization of adsorbents. We adopted numerical simulation methods based on the ANSYS Fluent 15.0 software to study the flow pattern in vertical radial flow adsorber, where programs of user-defined functions (UDF) were set up to interpret component equation, momentum equation and energy equation. To solve the problem of non-uniform air distribution, the relationship between the radial pressure drop across the bed and the ratio of cross-sectional area of the central pipe to that of the annular channel was studied, and optimization design of the distributor inserted in the central channel was given by parametric method at the same time. Through comparative analysis in the given experimental condition, the uniformity reached about 99.1% and the breakthrough time extended from 564 s to 1,175 s under the present optimized design method.
  1. Ebrahimi A, Meratizaman M, Reyhani HA, Pourali O, Amidpour M, Energy, 90, 1298 (2015)
  2. Mehrpooya M, Kalhorzadeh M, Chahartaghi M, J. Clean Prod., 113, 411 (2016)
  3. Zhang XJ, Lu JL, Qiu LM, Zhang XB, Wang XL, Chinese. J. Chem. Eng., 21, 494 (2013)
  4. Kerry FG, Industrial Gas Handbook, CRC Press, Florida (2006).
  5. Wang HY, Liu YS, Yang X, Chem. Ind. Eng. Prog., 33, 542 (2014)
  6. Zhang M, Cryogenic. Technol., 2, 8 (2006)
  7. Li G, Xiao P, Webley PA, Zhang J, Singh R, Energy Procedia, 1, 1123 (2009)
  8. Yaghoobpour E, Ahmadpour A, Farhadian N, Shariaty-Niassar M, Korean J. Chem. Eng., 32(3), 494 (2015)
  9. Li RJ, Zhu ZB, Chem. React. Eng. Technol., 24, 368 (2008)
  10. Mulgundmath VP, Tezel FH, Saatcioglu T, Golden TC, Can. J. Chem. Eng., 90(3), 730 (2012)
  11. Epiepang FE, Li JB, Liu YS, Yang RT, Chem. Eng. Sci., 147, 100 (2016)
  12. Kareeri AA, Zughbi HD, Al-Ali HH, Ind. Eng. Chem. Res., 45(8), 2862 (2006)
  13. Genkin VS, Dil-Man VV, Sergeev SP, Int. Chem. Eng., 13, 24 (1973)
  14. Celik CE, Ackley MW, EU Patent, 2,624,946 (2014).
  15. Wang HY, Liu YS, Meng Y, Chinese J. Eng., 1, 91 (2015)
  16. Wang X, Cryogenics, 1, 19 (2013)
  17. Tian QQ, He GG, Wang ZP, Cai DH, Chen LP, Ind. Eng. Chem. Res., 54(30), 7502 (2015)
  18. Rui DZ, Zhang XJ, Chen Y, Qiu LM, Chinese J. Chem. Eng., 11, 4485 (2015)
  19. Tang ZL, Xu MY, Zhang J, J. Tianjin Univ., 3, 305 (2016)
  20. Zhang CF, Zhu ZB, Xu MS, Zhu BC, J. Chem. Ind. Eng., 1, 67 (1979)
  21. Li RJ, Cui CX, Wu YQ, Zhu ZB, Chin. J. Proc. Eng., 2, 209 (2010)