화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.4, 974-983, April, 2018
Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation
E-mail:
The electrochemical route is a promising and environmentally friendly technique for fabrication of metal organic frameworks (MOFs) due to mild synthesis condition, short time for crystal growth and ease of scale up. A microstructure Cu3(BTC)2 MOF was synthesized through electrochemical path and successfully employed for CO2 and CH4 adsorption. Characterization and structural investigation of the MOF was carried out by XRD, FE-SEM, TGA, FTIR and BET analyses. The highest amount of carbon dioxide and methane sorption was 26.89 and 6.63 wt%, respectively, at 298K. The heat of adsorption for CO2 decreased monotonically, while an opposite trend was observed for CH4. The results also revealed that the selectivity of the developed MOF towards CO2 over CH4 enhanced with increase of pressure and composition of carbon dioxide component as predicted by the ideal adsorption solution theory (IAST). The regeneration of as-synthesized MOF was also studied in six consecutive cycles and no considerable reduction in CO2 adsorption capacity was observed.
  1. Abid HR, Rada ZH, Shang J, Wang S, Polyhedron (2016).
  2. Stewart C, Hessami MA, Energy Conv. Manag., 46(3), 403 (2005)
  3. Adhikari AK, Lin KS, Chem. Eng. J., 284, 1348 (2016)
  4. Yoon HC, Rallapalli PBS, Han SS, Beum HT, Jung TS, Cho DW, Ko M, Kim JN, Korean J. Chem. Eng., 32(12), 2501 (2015)
  5. He Y, Zhou W, Qian G, Chen B, Chem. Soc. Rev., 43, 5657 (2014)
  6. Waller MG, Williams ED, Matteson SW, Trabold TA, Appl. Energy, 127, 55 (2014)
  7. Choi S, Drese JH, Jones CW, ChemSusChem, 2, 796 (2009)
  8. Wang X, Chen LL, Guo QJ, Chem. Eng. J., 260, 573 (2015)
  9. Li YD, Yi HH, Tang XL, Li FR, Yuan Q, Chem. Eng. J., 229, 50 (2013)
  10. Liu L, Nicholson D, Bhatia SK, J. Phys. Chem. C, 119, 407 (2014)
  11. Yi HH, Li FR, Ning P, Tang XL, Peng JH, Li YD, Deng H, Chem. Eng. J., 215, 635 (2013)
  12. Shen CZ, Grande CA, Li P, Yu JG, Rodrigues AE, Chem. Eng. J., 160(2), 398 (2010)
  13. Raganati F, Gargiulo V, Ammendola P, Alfe M, Chirone R, Chem. Eng. J., 239, 75 (2014)
  14. Munusamy K, Sethia G, Patil DV, Rallapalli PBS, Somani RS, Bajaj HC, Chem. Eng. J., 195, 359 (2012)
  15. Janiak C, Vieth JK, New J. Chem., 34, 2366 (2010)
  16. Joaristi AM, Juan-Alcaniz J, Serra-Crespo P, Kapteijn F, Gascon J, Cryst. Growth Des., 12, 3489 (2012)
  17. Long JR, Yaghi OM, Chem. Soc. Rev., 38, 1213 (2009)
  18. Al-Kutubi H, Gascon J, Sudholter EJ, Rassaei L, ChemElectroChem, 2, 462 (2015)
  19. Jung DW, Yang DA, Kim J, Kim J, Ahn WS, Dalton Trans., 39, 2883 (2010)
  20. Ni Z, Masel RI, J. Am Chem. Soc., 128, 12394 (2006)
  21. Khazalpour S, Safarifard V, Morsali A, Nematollahi D, RSC Adv., 5, 36547 (2015)
  22. Ameloot R, Stappers L, Fransaer J, Alaerts L, Sels BF, De Vos DE, Chem. Mater., 21, 2580 (2009)
  23. Czaja AU, Trukhan N, Muller U, Chem. Soc. Rev., 38, 1284 (2009)
  24. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID, Science, 283(5405), 1148 (1999)
  25. Schlichte K, Kratzke T, Kaskel S, Microporous Mesoporous Mater., 73, 81 (2004)
  26. Gaab M, Trukhan N, Maurer S, Gummaraju R, Muller U, Microporous Mesoporous Mater., 157, 131 (2012)
  27. Silva P, Vilela SM, Tome JP, Paz FAA, Chem. Soc. Rev., 44, 6774 (2015)
  28. Grondein A, Belanger D, Fuel, 90(8), 2684 (2011)
  29. Khoshhal S, Ghoreyshi AA, Jahanshahi M, Mohammadi M, RSC Adv., 5, 24758 (2015)
  30. Sun B, Kayal S, Chakraborty A, Energy, 76, 419 (2014)
  31. Letcher TM, Thermodynamics, solubility and environmental issues, Elsevier (2007).
  32. Wu B, Zhang YM, Wang HP, J. Phys. Chem. B, 113(36), 12332 (2009)
  33. Caminati W, Melandri S, Maris A, Ottaviani P, Angew. Chem.-Int. Edit., 45, 2438 (2006)
  34. Hartmann M, Kunz S, Himsl D, Tangermann O, Ernst S, Wagener A, Langmuir, 24(16), 8634 (2008)
  35. Li J, Yang J, Li L, Li J, J. Energy Chem., 23, 453 (2014)
  36. Martinez F, Sanz R, Orcajo G, Briones D, Yanguez V, Chem. Eng. Sci., 142, 55 (2016)
  37. Bhadauria S, Nanoti A, Dasgupta S, Divekar S, Gupta P, Chauhan R, RSC Adv., 6, 93003 (2016)
  38. Salehi S, Anbia M, Energy Fuels, 31(5), 5376 (2017)
  39. Al-Janabi N, Hill P, Torrente-Murciano L, Garforth A, Gorgojo P, Siperstein F, Fan XL, Chem. Eng. J., 281, 669 (2015)
  40. Schlesinger M, Schulze S, Hietschold M, Mehring M, Microporous Mesoporous Mater., 132, 121 (2010)
  41. Kumar RS, Kumar SS, Kulandainathan MA, Microporous Mesoporous Mater., 168, 57 (2013)
  42. Ardelean I, Cora S, J. Mater. Sci.: Mater. Electronics, 19, 584 (2008)
  43. Banisheykholeslami F, Ghoreyshi AA, Mohammadi M, Pirzadeh K, CLEAN-Soil, Air, Water, 43, 1084 (2015)
  44. Wu H, Simmons JM, Srinivas G, Zhou W, Yildirim T, J. Phys. Chem. Lett, 1, 1946 (2010)
  45. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M, Appl. Geochem., 22, 249 (2007)
  46. Zhu C, Zhang Z, Wang B, Chen Y, Wang H, Chen X, Zhang H, Sun N, Wei W, Sun Y, Microporous Mesoporous Mater., 226, 476 (2016)
  47. Rada ZH, Abid HR, Shang J, He YD, Webley P, Liu SM, Sun HQ, Wang SB, Fuel, 160, 318 (2015)
  48. Abid HR, Rada ZH, Shang J, Wang S, Polyhedron, 120, 103 (2016)
  49. Du J, Zou G, Inorg. Chem. Commun., 69, 20 (2016)
  50. Qiu H, Lv L, Pan BC, Zhang QJ, Zhang WM, Zhang QX, J. Zhejiang University-Science A, 10, 716 (2009)
  51. Lazaridis N, Asouhidou D, Water Res., 37, 2875 (2003)
  52. Mehrvarz E, Ghoreyshi AA, Jahanshahi M, Front. Chem. Sci. Eng., 11, 252 (2017)
  53. Prasetyo I, Do DD, Chem. Eng. Sci., 53(19), 3459 (1998)
  54. Chowdhury S, Balasubramanian R, J. CO2 Util., 13, 50 (2016)
  55. Bao ZB, Yu LA, Ren QL, Lu XY, Deng SG, J. Colloid Interface Sci., 353(2), 549 (2011)
  56. Zhimin H, Guocong Y, Barba D, J. Chem. Ind. Eng., 44, 143 (1993)
  57. Myers A, Prausnitz JM, AIChE J., 11, 121 (1965)
  58. Zhang ZJ, Xian SK, Xia QB, Wang HH, Li Z, Li J, AIChE J., 59(6), 2195 (2013)
  59. Mishra P, Mekala S, Dreisbach F, Mandal B, Gumma S, Sep. Purif. Technol., 94, 124 (2012)