Clean Technology, Vol.24, No.1, 70-76, March, 2018
Auger 반응기에서 제조한 다시마 유래 열분해오일의 특성
Characteristics of Pyrolysis Oils from Saccharina japonica in an Auger Reactor
E-mail:,
초록
오거 반응기를 이용하여 해조류 바이오매스인 다시마로부터 열분해 오일 제조 실험을 수행하였으며, 열분해 오일의 물리화학적 특성을 살펴보았다. 주요 공정 변수인 열분해 온도 및 오거 컨베이어 속도의 최적 조건은 각각 412 ℃, 20 rpm이었으며, 이 때 열분해 오일의 최대 수율은 32 wt%이었다. 낮은 탄소 함량 및 높은 산소 함량으로 인해, 다시마 유래 열분해 오일의 발열량(23.6 MJ kg-1)은 기존 화석연료의 약 60% 이었다. 열분해 오일의 GC/MS 분석 결과, 1,4-Anhydro-d-galactitol, dianhydromannitol, 1-hydroxy 2-propanone, isosorbide 등이 주요 화합물로 확인되었다. 촤는 탄소 함량이 낮고 산소함량이 높아 발열량(13.0 MJ kg-1)이 낮으며 다량의 무기 성분 및 황을 포함하고 있는 것으로 확인되었다.
Pyrolysis of Saccharina japonica in an Auger reactor was conducted by varying the temperature and the auger speed and then physicochemical properties of the S. japonica-derived pyrolysis oil were analyzed. The maximum yield of S. japonica-derived pyrolysis oil (32 wt%) was obtained at a pyrolysis temperature of 412 ℃ and an auger speed of 20 rpm. Due to low carbon content and high oxygen content in the pyrolysis oil, the higher heating value of S. japonica-derived pyrolysis oil was 23.6 MJ kg-1, which was about 60% that of conventional hydrocarbon fuels. By GC/MS analysis, 1,4-Anhydro-d-galactitol, dianhydromannitol, 1-hydroxy 2-propanone and isosorbide were identified as the main chemical compounds of S. japonicaderived pyrolysis oil. The bio-char has low higher heating value (13.0 MJ kg-1) due to low carbon content and high oxygen content and contains a large amount of inorganic components and sulfur.
- Jung KA, Lim SR, Kim Y, Park JM, Bioresour. Technol., 135, 182 (2013)
- Ryu JK, Cho JH, DYK, Policy Research, Korea Maritime Institute, Seoul, Korea, 2009.
- Bridgwater AV, Meier D, Radlein D, Org Geochem., 30, 1479 (1999)
- Demirbas A, Arin G, Energ. Source, 24, 471 (2002)
- Zhang LH, Xu CB, Champagne P, Energy Conv. Manag., 51(5), 969 (2010)
- Balat M, Energy Sources Part A-Recovery Util. Environ. Eff., 33(7), 674 (2011)
- Lu Q, Zhang ZB, Zhang CJ, Su SH, Li WY, Dong CQ, Appl. Mech. Mater., 130-134, 422 (2012)
- Pimenidou P, Dupont V, Bioresour. Technol., 109, 198 (2012)
- Ingram L, Mohan D, Bricka M, Steele P, Strobel D, Crocker D, Mitchell B, Mohammad J, Cantrell K, Pittman CU, Energy Fuels, 22(1), 614 (2008)
- Anastasakis K, Ross AB, Jones JM, Fuel, 90(2), 598 (2011)
- Zhao H, Yan H, Dong S, Zhang Y, Sun B, Zhang C, Ai Y, Chen B, Liu Q, Sui T, Qin S, J. Therm. Anal. Calorim., 111, 1685 (2013)
- Wang S, Hu YM, Uzoejinwa BB, Cao B, He ZX, Wang Q, Xu SN, J. Anal. Appl. Pyrolysis, 124, 373 (2017)
- Choi JH, Kim SS, Suh DJ, Jang EJ, Min KI, Woo HC, Korean J. Chem. Eng., 33(9), 2691 (2016)
- Choi JW, Choi JH, Suh DJ, Kim H, J. Anal. Appl. Pyrolysis, 112, 141 (2015)
- Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK, Bioresour. Technol., 102(3), 3512 (2011)
- Ly HV, Kim SS, Woo HC, Choi JH, Suh DJ, Kim J, Energy, 93, 1436 (2015)
- Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Fuel, 89(5), 913 (2010)
- Vertes AA, Biomass to Biofuels : Strategies for Global Industries, Wiley, Hoboken, N.J., 2010.
- Kato Y, Enomoto R, Akazawa M, Kojima Y, Springerplus, 5 (2016)
- Solar J, de Marco I, Caballero BM, Lopez-Urionabarrenechea A, Rodriguez N, Agirre I, Adrados A, Biomass Bioenerg., 95, 416 (2016)