화학공학소재연구정보센터
Clean Technology, Vol.24, No.1, 70-76, March, 2018
Auger 반응기에서 제조한 다시마 유래 열분해오일의 특성
Characteristics of Pyrolysis Oils from Saccharina japonica in an Auger Reactor
E-mail:,
초록
오거 반응기를 이용하여 해조류 바이오매스인 다시마로부터 열분해 오일 제조 실험을 수행하였으며, 열분해 오일의 물리화학적 특성을 살펴보았다. 주요 공정 변수인 열분해 온도 및 오거 컨베이어 속도의 최적 조건은 각각 412 ℃, 20 rpm이었으며, 이 때 열분해 오일의 최대 수율은 32 wt%이었다. 낮은 탄소 함량 및 높은 산소 함량으로 인해, 다시마 유래 열분해 오일의 발열량(23.6 MJ kg-1)은 기존 화석연료의 약 60% 이었다. 열분해 오일의 GC/MS 분석 결과, 1,4-Anhydro-d-galactitol, dianhydromannitol, 1-hydroxy 2-propanone, isosorbide 등이 주요 화합물로 확인되었다. 촤는 탄소 함량이 낮고 산소함량이 높아 발열량(13.0 MJ kg-1)이 낮으며 다량의 무기 성분 및 황을 포함하고 있는 것으로 확인되었다.
Pyrolysis of Saccharina japonica in an Auger reactor was conducted by varying the temperature and the auger speed and then physicochemical properties of the S. japonica-derived pyrolysis oil were analyzed. The maximum yield of S. japonica-derived pyrolysis oil (32 wt%) was obtained at a pyrolysis temperature of 412 ℃ and an auger speed of 20 rpm. Due to low carbon content and high oxygen content in the pyrolysis oil, the higher heating value of S. japonica-derived pyrolysis oil was 23.6 MJ kg-1, which was about 60% that of conventional hydrocarbon fuels. By GC/MS analysis, 1,4-Anhydro-d-galactitol, dianhydromannitol, 1-hydroxy 2-propanone and isosorbide were identified as the main chemical compounds of S. japonicaderived pyrolysis oil. The bio-char has low higher heating value (13.0 MJ kg-1) due to low carbon content and high oxygen content and contains a large amount of inorganic components and sulfur.
  1. Jung KA, Lim SR, Kim Y, Park JM, Bioresour. Technol., 135, 182 (2013)
  2. Ryu JK, Cho JH, DYK, Policy Research, Korea Maritime Institute, Seoul, Korea, 2009.
  3. Bridgwater AV, Meier D, Radlein D, Org Geochem., 30, 1479 (1999)
  4. Demirbas A, Arin G, Energ. Source, 24, 471 (2002)
  5. Zhang LH, Xu CB, Champagne P, Energy Conv. Manag., 51(5), 969 (2010)
  6. Balat M, Energy Sources Part A-Recovery Util. Environ. Eff., 33(7), 674 (2011)
  7. Lu Q, Zhang ZB, Zhang CJ, Su SH, Li WY, Dong CQ, Appl. Mech. Mater., 130-134, 422 (2012)
  8. Pimenidou P, Dupont V, Bioresour. Technol., 109, 198 (2012)
  9. Ingram L, Mohan D, Bricka M, Steele P, Strobel D, Crocker D, Mitchell B, Mohammad J, Cantrell K, Pittman CU, Energy Fuels, 22(1), 614 (2008)
  10. Anastasakis K, Ross AB, Jones JM, Fuel, 90(2), 598 (2011)
  11. Zhao H, Yan H, Dong S, Zhang Y, Sun B, Zhang C, Ai Y, Chen B, Liu Q, Sui T, Qin S, J. Therm. Anal. Calorim., 111, 1685 (2013)
  12. Wang S, Hu YM, Uzoejinwa BB, Cao B, He ZX, Wang Q, Xu SN, J. Anal. Appl. Pyrolysis, 124, 373 (2017)
  13. Choi JH, Kim SS, Suh DJ, Jang EJ, Min KI, Woo HC, Korean J. Chem. Eng., 33(9), 2691 (2016)
  14. Choi JW, Choi JH, Suh DJ, Kim H, J. Anal. Appl. Pyrolysis, 112, 141 (2015)
  15. Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK, Bioresour. Technol., 102(3), 3512 (2011)
  16. Ly HV, Kim SS, Woo HC, Choi JH, Suh DJ, Kim J, Energy, 93, 1436 (2015)
  17. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Fuel, 89(5), 913 (2010)
  18. Vertes AA, Biomass to Biofuels : Strategies for Global Industries, Wiley, Hoboken, N.J., 2010.
  19. Kato Y, Enomoto R, Akazawa M, Kojima Y, Springerplus, 5 (2016)
  20. Solar J, de Marco I, Caballero BM, Lopez-Urionabarrenechea A, Rodriguez N, Agirre I, Adrados A, Biomass Bioenerg., 95, 416 (2016)