화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.2, 155-161, April, 2018
폴리아크릴아마이드를 기반으로 하는 다기능성 토양안정제의 특성에 관한 연구
Research on Characteristics of Multifunctional Soil Binder Based on Polyacrylamide
E-mail:
초록
훼손된 비탈면을 효율적으로 복구하고 토양을 견고하게 지지하고 식물 생장을 도울 수 있는 토양바인더 사용이 매우 중요하다고 할 수 있다. 이러한 토양바인더는 토양을 오염시키지 않는 친환경 소재이면서 토양의 생태를 복원할 수 있어야 한다. 본 연구에서는 토양바인더 외에 흡수제와 응집제를 첨가하여, 최적의 함수율, 투수계수, 직접전단강도 값을 갖는 조건을 도출하였다. 토양바인더로는 다양한 음이온강도의 polyacrylamide (PAM)를, 흡수제로는 super absorbent polymer (SAP), 응집제로는 cellulose ether (CE)를 사용하여 그 효과를 관찰하였다. 그 결과 우선 토양바인더를 사용한 경우 토양시험편의 직접전단강도와 함수율을 각각 수십 배 이상 그리고 두 배 이상 증가시킬 수 있었으며 변수위 투수계수를 낮춤으로 인해 방수의 효과가 증가함을 관찰되었다. 첨가제로서 SAP를 사용한 경우 그 효과를 더욱 높일 수 있었고 SAP의 응집력을 높이기 위해 첨가된 CE 역시 직접전단강도와 함수율을 높임을 관찰할 수 있었다.
For the efficient recovering of collapsed sloped soil, using a soil binder that can support the soil strongly and help the growth of plants is very important. The soil binder should also have functions of recovering the soil ecologically as well as be environmental friendly materials. In this research, optimum values of the water content and permeability and direct shear strength were searched by adding the water absorbent and coagulant into the soil binder. The polyacrylamide (PAM) with various anionic strength, super absorbent polymer (SAP) and cellulose ether (CE) were used as a soil binder, water absorbent and coagulant, respectively. Effects of the soil binder on the characteristics of soil were observed by changing the mixing ratio of PAM, SAP and CE. Experimental results showed that the soil binder increased the direct shear strength tens of times and the water content around two times, whereas decreased the water permeability. Also, the addition of CE to increase the coagulation of SAP increased more of the direct shear strength and water content.
  1. Kim JH, Park SW, Jeong SS, Yoo JH, J. Korean Geothech. Soc., 18(2), 123 (2002)
  2. Sa GM, Kim MS, Kim SS, Lee IY, J. Korean Geotech. Soc., 22(5), 83 (2006)
  3. Song YS, Hong WP, Yun JM, Kim TY, Korean Society of Civil Engineers Annual Conference, 4454-4457 (2005).
  4. Cho SE, Lee SR, J. Korean Geotech. Soc., 17(4), 135 (2001)
  5. Kim YS, Kim JH, Bhang IH, Seo SG, J. Korean Geotech. Soc., 29(1), 49 (2013)
  6. Trzebiatowski B, Edil T, Benson C, Wisconsin. In: ASCE Civil Engineering Conference and Exposition 2004, ASCE GSP No. 127, 123-136 (2005).
  7. Edil TB, Acosta HA, Benson CH, J. Mater. Civil Eng., 18(2), 283 (2006)
  8. Kim KH, Kim YT, Lee SH, J. Korean Geothech. Soc., 26(10), 5 (2010)
  9. Entry JA, Sojka RE, Watwood M, Ross C, Environ. Pollut., 120, 192 (2002)
  10. Green VS, Stott DE, Norton LD, Graveel JG, Soil Sci. Soc. Am. J., 64, 1786 (2000)
  11. Entry JA, Sojka RE, Watwood M, Ross C, Environ. Pollut., 11, 183 (2002)
  12. Shainberg I, Levy GJ, Soil Sci., 158, 267 (1994)
  13. Idowu J, Angadi S, Circular, 672, 2 (2013)
  14. Wallance A, Wallance GA, In: Proceedings of the Managing Irrigation-Induced Erosion and Infiltration with Polyacrylamide, pp. 59-63, May 6-8, Twin Falls, ID, USA (1996).
  15. Ben-Hur M, Malik M, Letey J, Mingelgrin U, Soil Sci., 153(5), 349 (1992)
  16. Kanungo SB, Indian J. Chem. Technol., 12, 557 (2005)
  17. Theng BKG, Formation and Properties of Clay-Polymer Complexes, 2nd ed., 60-63, Elsevier (2012).