화학공학소재연구정보센터
Macromolecular Research, Vol.26, No.4, 317-321, April, 2018
Porous Carbon Networks with Nanosphere-Interconnected Structure via 3-Aminophenol-Formaldehyde Polymerization
E-mail:,
Although mesoporous carbon materials with hierarchical nanostructures have been produced by the synthesis of hybrid nanoparticles with a silicon dioxide (SiO2) core and a shell of resorcinol formaldehyde resin, it still remains a challenge to effectively tune the pore size distribution. Among a series of phenol derivatives, 3-aminophenol was found to exhibit not only excellent tunability of the size and low roughness of the sphere surface but also high pyrolysis yields in the synthesis of carbon nano/microspheres. Here, we report that mesoporous carbon networks with a bimodal pore size distribution in their hierarchical nanostructure were prepared by 3-aminophenol and formaldehyde polymerization on the SiO2 cores. In particular, the systematic control of the ratio of carbon precursors and silica nanoparticles provides a better control of the microstructure in hybrid nanoparticles with a shell of variable thickness composed of well-defined 3-aminophenol and formaldehyde resins, resulting in the tunability of their pore size distribution.
  1. Oh M, Mirkin CA, Nature, 438, 651 (2005)
  2. Nieto-Marquez A, Romero R, Romero A, Valverde JL, J. Mater. Chem., 21, 1664 (2011)
  3. Roberts AD, Li X, Zhang H, Chem. Soc. Rev., 43, 4341 (2014)
  4. Liu J, Wickramaratne NP, Qiao SZ, Jaroniec M, Nat. Mater., 14(8), 763 (2015)
  5. Lee J, Kim J, Hyeon T, Adv. Mater., 18(16), 2073 (2006)
  6. White RJ, Tauer K, Antonietti M, Titirici MM, J. Am. Chem. Soc., 132(49), 17360 (2010)
  7. Li ZH, Wu DC, Liang YR, Fu RW, Matyjaszewski K, J. Am. Chem. Soc., 136(13), 4805 (2014)
  8. Wu DC, Hui CM, Dong HC, Pietrasik J, Ryu HJ, Li ZH, Zhong MJ, He HK, Kim EK, Jaroniec M, Kowalewski T, Matyjaszewski K, Macromolecules, 44(15), 5846 (2011)
  9. Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF, Angew. Chem.-Int. Edit., 51, 3591 (2012)
  10. Liu J, Yang T, Wang DW, Lu GQ, Zhao D, Qiao SZ, Nat. Commun., 4, 2798 (2013)
  11. Kim D, Kirakosyan A, Choi J, Macromol. Rapid Commun., 37(18), 1507 (2016)
  12. Wickramaratne NP, Jaroniec M, J. Mater. Chem. A, 1, 112 (2013)
  13. Liang Y, Fu R, Wu D, ACS Nano, 7, 1748 (2013)
  14. Chi Z, Zhang W, Wang X, Cheng F, Chen J, Cao A, Wan L, ACS Appl. Mater. Interfaces, 6, 22719 (2014)
  15. Pekala RW, J. Mater. Sci., 24, 3221 (1989)
  16. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ, Angew. Chem.-Int. Edit., 50, 5947 (2011)
  17. Liu T, Qu L, Qian K, Liu J, Zhang Q, Liu L, Liu S, Chem. Commun., 52, 1709 (2016)
  18. Han S, Sohn K, Hyeon T, Chem. Mater., 12, 3337 (2000)
  19. Zhao JM, Niu WX, Zhang L, Cai HR, Han MY, Yuan YL, Majeed S, Anjum S, Xu GB, Macromolecules, 46(1), 140 (2013)
  20. Zhao J, Luque R, Qi W, Lai J, Gao W, Gilani MRHS, Xu G, J. Mater. Chem. A, 3, 519 (2015)
  21. Lin C, Ritter JA, Carbon, 35, 1271 (1997)
  22. Wang S, Li WC, Hao GP, Hao Y, Sun Q, Zhang XQ, Lu AH, J. Am. Ceram. Soc., 133, 15304 (2011)
  23. Pizzi A, Garcia R, Wang S, J. Appl. Polym. Sci., 66(2), 255 (1997)
  24. Guo DD, Zhan MS, Wang K, J. Appl. Polym. Sci., 126(6), 2010 (2012)
  25. Nair CPR, Prog. Polym. Sci, 29, 401 (2004)
  26. Ferrari AC, Robertson J, Phys. Rev. B, 61, 14095 (2000)
  27. Ferrari AC, Solid State Commun., 143, 47 (2007)
  28. Kumar PV, Bardhan NM, Tongay S, Wu J, Belcher AM, Grossman JC, Nat. Chem., 6, 151 (2014)