Macromolecular Research, Vol.26, No.4, 317-321, April, 2018
Porous Carbon Networks with Nanosphere-Interconnected Structure via 3-Aminophenol-Formaldehyde Polymerization
E-mail:,
Although mesoporous carbon materials with hierarchical nanostructures have been produced by the synthesis of hybrid nanoparticles with a silicon dioxide (SiO2) core and a shell of resorcinol formaldehyde resin, it still remains a challenge to effectively tune the pore size distribution. Among a series of phenol derivatives, 3-aminophenol was found to exhibit not only excellent tunability of the size and low roughness of the sphere surface but also high pyrolysis yields in the synthesis of carbon nano/microspheres. Here, we report that mesoporous carbon networks with a bimodal pore size distribution in their hierarchical nanostructure were prepared by 3-aminophenol and formaldehyde polymerization on the SiO2 cores. In particular, the systematic control of the ratio of carbon precursors and silica nanoparticles provides a better control of the microstructure in hybrid nanoparticles with a shell of variable thickness composed of well-defined 3-aminophenol and formaldehyde resins, resulting in the tunability of their pore size distribution.
- Oh M, Mirkin CA, Nature, 438, 651 (2005)
- Nieto-Marquez A, Romero R, Romero A, Valverde JL, J. Mater. Chem., 21, 1664 (2011)
- Roberts AD, Li X, Zhang H, Chem. Soc. Rev., 43, 4341 (2014)
- Liu J, Wickramaratne NP, Qiao SZ, Jaroniec M, Nat. Mater., 14(8), 763 (2015)
- Lee J, Kim J, Hyeon T, Adv. Mater., 18(16), 2073 (2006)
- White RJ, Tauer K, Antonietti M, Titirici MM, J. Am. Chem. Soc., 132(49), 17360 (2010)
- Li ZH, Wu DC, Liang YR, Fu RW, Matyjaszewski K, J. Am. Chem. Soc., 136(13), 4805 (2014)
- Wu DC, Hui CM, Dong HC, Pietrasik J, Ryu HJ, Li ZH, Zhong MJ, He HK, Kim EK, Jaroniec M, Kowalewski T, Matyjaszewski K, Macromolecules, 44(15), 5846 (2011)
- Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF, Angew. Chem.-Int. Edit., 51, 3591 (2012)
- Liu J, Yang T, Wang DW, Lu GQ, Zhao D, Qiao SZ, Nat. Commun., 4, 2798 (2013)
- Kim D, Kirakosyan A, Choi J, Macromol. Rapid Commun., 37(18), 1507 (2016)
- Wickramaratne NP, Jaroniec M, J. Mater. Chem. A, 1, 112 (2013)
- Liang Y, Fu R, Wu D, ACS Nano, 7, 1748 (2013)
- Chi Z, Zhang W, Wang X, Cheng F, Chen J, Cao A, Wan L, ACS Appl. Mater. Interfaces, 6, 22719 (2014)
- Pekala RW, J. Mater. Sci., 24, 3221 (1989)
- Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ, Angew. Chem.-Int. Edit., 50, 5947 (2011)
- Liu T, Qu L, Qian K, Liu J, Zhang Q, Liu L, Liu S, Chem. Commun., 52, 1709 (2016)
- Han S, Sohn K, Hyeon T, Chem. Mater., 12, 3337 (2000)
- Zhao JM, Niu WX, Zhang L, Cai HR, Han MY, Yuan YL, Majeed S, Anjum S, Xu GB, Macromolecules, 46(1), 140 (2013)
- Zhao J, Luque R, Qi W, Lai J, Gao W, Gilani MRHS, Xu G, J. Mater. Chem. A, 3, 519 (2015)
- Lin C, Ritter JA, Carbon, 35, 1271 (1997)
- Wang S, Li WC, Hao GP, Hao Y, Sun Q, Zhang XQ, Lu AH, J. Am. Ceram. Soc., 133, 15304 (2011)
- Pizzi A, Garcia R, Wang S, J. Appl. Polym. Sci., 66(2), 255 (1997)
- Guo DD, Zhan MS, Wang K, J. Appl. Polym. Sci., 126(6), 2010 (2012)
- Nair CPR, Prog. Polym. Sci, 29, 401 (2004)
- Ferrari AC, Robertson J, Phys. Rev. B, 61, 14095 (2000)
- Ferrari AC, Solid State Commun., 143, 47 (2007)
- Kumar PV, Bardhan NM, Tongay S, Wu J, Belcher AM, Grossman JC, Nat. Chem., 6, 151 (2014)