화학공학소재연구정보센터
Macromolecular Research, Vol.26, No.4, 380-387, April, 2018
Two New Triply Periodic Bicontinuous Network Structures for Molten Block Copolymers
E-mail:
The evolution of new triply periodic bicontinuous morphologies of molten diblock and triblock copolymers is theoretically studied in a mean-field level. The evolved mesophases are probed through characteristic peaks in the scattering functions and the real-space visualization. The ABC or AB copolymers at selected compositions and segregation levels exhibit holey network structures with Ia3d and I43d symmetries, where the channels are wholly connected with tetrapod units. The curvatures, surface areas, and genera g’s of their dividing surfaces are estimated by matching them to proper model surfaces. The obtained surface properties of the newly developed networks are discussed in comparison with those of the known bicontinuous networks such as double gyroids and double diamonds.
  1. Bates FS, Fredrickson GH, Annu. Rev. Phys. Chem., 41, 525 (1990)
  2. Lodge TP, Macromol. Chem. Phys., 204, 265 (2003)
  3. Hamley IW, John Wiley & Sons Ltd., Chichester, England, 2004.
  4. Hamley IW, Prog. Polym. Sci, 34, 1161 (2009)
  5. Hadjichristidis N, Pispas S, Floudas GA, Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.
  6. Hamley IW, The Physics of Block Copolymers, Oxford University Press, Inc., New York, 1998.
  7. Leibler L, Macromolecules, 13, 1602 (1980)
  8. Epps TH, Cochran EW, Bailey TS, Waletzko RS, Hardy CM, Bates FS, Macromolecules, 37(22), 8325 (2004)
  9. Tyler CA, Morse DC, Phys. Rev. Lett., 94 (2005)
  10. Kim MI, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Hasegawa H, Ito K, Takenaka M, Macromolecules, 41(20), 7667 (2008)
  11. Winey KI, Thomas EL, Fetters LJ, Macromolecules, 25, 2645 (1992)
  12. Matsen MW, Bates FS, Macromolecules, 29(23), 7641 (1996)
  13. Wei Z, Wang ZG, Macromolecules, 28(21), 7215 (1995)
  14. Bates FS, Fredrickson GH, Phys. Today, 52, 32 (1999)
  15. Bates FS, MRS Bull., 30, 532 (2005)
  16. Cho JH, Polymer, 97, 589 (2016)
  17. Lee S, Bluemle MJ, Bates FS, Science, 330(6002), 349 (2010)
  18. Matsen MW, Macromolecules, 45(4), 2161 (2012)
  19. Xie N, Li W, Qiu F, Shi AC, ACS Macro Lett., 3, 906 (2014)
  20. Jang SG, Kim BJ, Hawker CJ, Kramer EJ, Macromolecules, 44(23), 9366 (2011)
  21. Gozdz WT, Holyst R, Phys. Rev. E, 54, 5012 (1996)
  22. Gozdz WT, Holyst R, Phys. Rev. Lett., 76, 2726 (1996)
  23. Helfand E, J. Chem. Phys., 62, 999 (1975)
  24. Scheutjens JMHM, Fleer GJ, J. Phys. Chem., 83, 1619 (1979)
  25. Hong KM, Noolandi J, Macromolecules, 14, 727 (1981)
  26. Matsen MW, Schick M, Phys. Rev. Lett., 72, 2660 (1994)
  27. Drolet F, Fredrickson GH, Phys. Rev. Lett., 83, 4317 (1999)
  28. Kriksin YA, Khalatur PG, Erukhimovich IY, Brinke GT, Khokhlov AR, Soft Matter, 5, 2896 (2009)
  29. Soldera A, Qi Y, Capehart WT, J. Chem. Phys., 130 (2009)
  30. Li F, Schellekens M, de Bont J, Peters R, Overbeek A, Leermakers FAM, Tuinier R, Macromolecules, 48(4), 1194 (2015)
  31. Arora A, Qin J, Morse DC, Delaney KT, Fredrickson GH, Bates FS, Dorfman KD, Macromolecules, 49(13), 4675 (2016)
  32. Cho J, ACS Macro Lett., 2, 549 (2013)
  33. Alan Schoen Geometry, http://schoengeometry.com/Vol. 2017.
  34. It needs to be mentioned that other ensembles including Grand canonical mVT or Gibbs NPT ensemble can also be used.
  35. Edwards E, Proc. Phys. Soc., 85, 613 (1965)
  36. Goldenfeld N, Lectures on Phase Transitions and the Renormalization Group, Addison-Wesley Publishing Company, Reading, 1992.
  37. In our NVT ensemble treatment, we perform simulations in the boxes of various fixed sizes and the simulation run with the lowest free energy is chosen as the optimized one.
  38. Rasmussen KO, Kalosakas G, J. Polym. Sci. B: Polym. Phys., 40(16), 1777 (2002)
  39. Goldman R, Comput. Aided Geom. Des., 22, 632 (2005)
  40. Gray A, Abbena E, Salamon S, Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd ed., Chapman & Hall/CRC, Boca Raton, FL, 2006.
  41. In that work, we also considered the same copolymer with disparity in compressibilities of block components.
  42. Cho J, in Proceedings of PSK40-IUPAC, Jeju, 2016; in Bulletin of the American Physical Society, New Orleans, 2017.
  43. Aksimentiev A, Holyst R, J. Chem. Phys., 111(5), 2329 (1999)
  44. Wohlgemuth M, Yufa N, Hoffman J, Thomas LE, Macromolecules, 34(17), 6083 (2001)
  45. Fischer W, Koch E, Z. Krystallogr., 179, 22 (1987)
  46. Michielsen K, De Raedt H, De Hosson JTM, in Advances in Imaging and Electron Physics, P. Hawkes, Ed., Elsevier 2003, Vol. 125, p 76.
  47. Andersson S, Hyde ST, Larsson K, Lidin S, Chem. Rev., 88, 221 (1988)
  48. Bates PW, Wei GW, Zhao S, J. Comput. Chem., 29, 380 (2007)
  49. Dolan JA, Wilts BD, Vignolini S, Baumberg JJ, Steiner U, Wilkinson TD, Adv. Opt. Mater., 3, 12 (2015)
  50. Abueidda DW, Bakir M, Al-Rub RKA, Bergstrom JS, Sobh NA, Jasiuk I, Mater. Des., 122, 255 (2017)
  51. Muller M, Sun DW, Phys. Rev. Lett., 111, 267801 (2013)
  52. Chu CY, Lin WF, Tsai JC, Lai CS, Lo SC, Chen HL, Hashimoto T, Macromolecules, 45(5), 2471 (2012)
  53. Martinez-Veracoechea FJ, Escobedo FA, Macromolecules, 42(5), 1775 (2009)
  54. Martinez-Veracoechea FJ, Escobedo FA, Macromolecules, 42(22), 9058 (2009)
  55. Padmanabhan P, Martinez-Veracoechea F, Escobedo FA, Macromolecules, 49(14), 5232 (2016)
  56. Liu M, Qiang Y, Li W, Qiu F, Shi AC, ACS Macro Lett., 5, 1167 (2016)
  57. Huang K, Statistical Mechanics, Wiley, New York, 1987.
  58. Fredrickson GH, Helfand E, J. Chem. Phys., 87, 697 (1987)