Applied Surface Science, Vol.440, 1269-1276, 2018
Synthesis of nitrosobenzene via photocatalytic oxidation of aniline over MgO/TiO2 under visible light irradiation
MgO/TiO2 (Degussa P25 TiO2) composites were prepared and were used as visible-light-driven photocatalysts for the oxidation of aniline to nitrosobenzene under oxygen atmosphere. The typical sample with 5 wt% MgO loaded P25 (MP5) shows comparable photocatalytic activity with 2 wt% Pt/P25. The analyzed results of XPS indicate that the lattice oxygen in the MP5 possess higher electron density than those in P25. The electron-rich lattice oxygen, formed as a result of MgO loaded, would facilitate the deprontonation of aniline. A new peak at 3310 cm(-1) was observed in in-situ FTIR spectrum for aniline adsorbed on the sample MP5, suggesting that anilino species were formed. These species may be produced via the deprontonation of aniline and result in the formation of the surface complexes. Further XPS studies for aniline adsorbed on the catalysts also indicate the existence of the surface complexes. Under visible light irradiation, the electrons may excite from the surface complexes and initiate the oxidation processes. Finally, speculated photocatalytic processes for the oxidation of aniline to nitrosobenzene were proposed at molecular level. (C) 2018 Elsevier B.V. All rights reserved.
Keywords:MgO/TiO2;Nitroso benzene synthesis;Surface complex formation;Lattice oxygen;Oxygen speciesradicals;Visible light