Biochemical and Biophysical Research Communications, Vol.498, No.4, 884-890, 2018
Protein tyrosine kinase A modulates intracellular survival of mycobacteria through Galectin 3
Mycobacterium tuberculosis (MTB) is a successful pathogen which increases persistence inside the host macrophage by subverting its defence mechanism. Mycobacteria regulate the pathogenesis and intracellular survival by controlling its interaction with host protein(s). Galectin 3 is a member of the beta-galactoside binding gene family which is involved in several biological functions. In the present study, we have expressed the mycobacterial protein tyrosine kinase (PtkA) in the cytosol of host macrophages through a eukaryotic promoter vector and found that it down-regulates Galectin 3. Infection by ptkA knocked-out (KO) mycobacterial strain shows increased level of Galectin 3 in the cytosol of macrophages. PtkA regulates Galectin 3 level and stimulates host macrophage through MEK-JNK-cJUN pathway and initiates early apoptosis in H37Ra infected macrophage. The ptkA KO strain showed decreased progression of apoptosis confirming Galectin 3 as anti-apoptotic molecule. The intracellular survival was also found to be impaired in the mice infected with ptkA KO mycobacteria. The hypothesis was also confirmed by looking at the intracellular survival of mycobacteria in Galectin 3 silenced macrophages. The overall findings suggest the significance of Galectin 3 and PtkA interaction in intracellular persistence of mycobacteria. (C) 2018 Elsevier Inc. All rights reserved.