Chemical Engineering Journal, Vol.335, 831-842, 2018
MnO2 nanosheets grown on the internal/external surface of N-doped hollow porous carbon nanospheres as the sulfur host of advanced lithium-sulfur batteries
Nanostructured porous carbon materials are widely used as sulfur host materials in order to enhance sulfur utilization and improve electrical performance in Li-S batteries. However, owing to interface incompatibility between the nanocarbon with homogeneous nonpolar surface and intrinsic polar sulfur guests, the cathode materials still face poor stability during the long-term cycling process. Herein, based on a highly effective sulfur host, namely manganese oxide nanosheets grown on both sides of the N-doped hollow porous carbon nanospheres (NHCSs@MnO2), we put forward a rational physical and chemical dual-encapsulation strategy for the application of advanced Li-S batteries. The multifunctional, integrated and hollow hybrid nanospheres can provide efficient electron-modified interface, hold much more active material, and importantly face-to-face effectively prevent polysulfide dissolution and diffusion via the synergistic restriction, thus the developed NHCSs@MnO2/S composite exhibits an initial discharge capacity of 1249 mAh g(-1) at 0.5 C and a sustainable cycling stability with ultralow capacity decay of only 0.041% per cycle over 1000 cycles, implying its great prospects for the improved cyclability and electrochemical performance as application of advanced Li-S battery.
Keywords:Lithium-sulfur batteries;Hollow porous carbon nanospheres;Nitrogen-doping;Manganese dioxide;Shuttle effect